Publications by authors named "Mark Wallert"

Aims: Determine the effect of palmitoylation on the sodium hydrogen exchanger isoform 1 (NHE1), a member of the SLC9 family.

Main Methods: NHE1 expressed in native rat tissues or in heterologous cells was assessed for palmitoylation by acyl-biotinyl exchange (ABE) and metabolic labeling with [H]palmitate. Cellular palmitoylation was inhibited using 2-bromopalmitate (2BP) followed by determination of NHE1 palmitoylation status, intracellular pH, stress fiber formation, and cell migration.

View Article and Find Full Text PDF

Maintaining intracellular pH is crucial for preserving healthy cellular behavior and, when dysregulated, results in increased proliferation, migration, and invasion. The Na/H exchanger isoform 1 is a highly regulated transmembrane antiporter that maintains pH homeostasis by exporting protons in response to intra- and extracellular signals. Activation of Na/H exchanger isoform 1 is exquisitely regulated by the extracellular environment and protein cofactors, including calcineurin B homologous proteins 1 and 2.

View Article and Find Full Text PDF

The sodium hydrogen exchanger isoform one (NHE1) plays a critical role coordinating asymmetric events at the leading edge of migrating cells and is regulated by a number of phosphorylation events influencing both the ion transport and cytoskeletal anchoring required for directed migration. Lysophosphatidic acid (LPA) activation of RhoA kinase (Rock) and the Ras-ERK growth factor pathway induces cytoskeletal reorganization, activates NHE1 and induces an increase in cell motility. We report that both Rock I and II stoichiometrically phosphorylate NHE1 at threonine 653 in vitro using mass spectrometry and reconstituted kinase assays.

View Article and Find Full Text PDF

To enhance the preparedness of graduates from the Biochemistry and Biotechnology (BCBT) Major at Minnesota State University Moorhead for employment in the bioscience industry we have developed a new Industry certificate program. The BCBT Industry Certificate was developed to address specific skill sets that local, regional, and national industry experts identified as lacking in new B.S.

View Article and Find Full Text PDF

The sodium hydrogen exchanger isoform one is a critical regulator of intracellular pH, serves as an anchor for the formation of cytoplasmic signaling complexes, and modulates cytoskeletal organization. There is a growing interest in the potential for sodium hydrogen exchanger isoform one as a therapeutic target against cancer. Sodium hydrogen exchanger isoform one transport drives formation of membrane protrusions essential for cell migration and contributes to the establishment of a tumor microenvironment that leads to the rearrangement of the extracellular matrix further supporting tumor progression.

View Article and Find Full Text PDF

Research-based learning in a teaching environment is an effective way to help bring the excitement and experience of independent bench research to a large number of students. The program described here is the second of a two-semester biochemistry laboratory series. Here, students are empowered to design, execute and analyze their own experiments for the entire semester.

View Article and Find Full Text PDF

A successful laboratory experience provides the foundation for student success, creating active participation in the learning process. Here, we describe a new approach that emphasizes research, inquiry and problem solving in a year-long biochemistry experience. The first semester centers on the purification, characterization, and analysis of a novel fusion protein within a guided research experience.

View Article and Find Full Text PDF

Matrix metalloproteinase 9 (MMP-9) plays a critical role in digesting the extracellular matrix and has a vital function in tumor metastasis and invasion; this protease activity is significantly increased in non-small cell lung cancers. The sodium hydrogen exchanger isoform 1 (NHE1) functions as a focal point for signal coordination and cytoskeletal reorganization. NHE1 is thought to play a central role in establishing signaling components at the leading edge of a migrating cell.

View Article and Find Full Text PDF

Phospholipase D is suspected to play a role in tumorigenesis, and the inhibition of phospholipase D has been associated with changes in several cellular events including invasion and migration. We report here that the specific alpha(1)-adrenergic receptor agonist, phenylepherine, signals to a growth factor pathway in a manner that requires phospholipase D activity in CCL39 fibroblasts. Phenylepherine increased extracellular signal-regulated kinase phosphorylation eightfold and promoted stress fiber formation threefold.

View Article and Find Full Text PDF

Minnesota State University Moorhead (MSUM) is a regional comprehensive university that is part of the Minnesota State Colleges and Universities (MnSCU) system. The current student population consists of ∼7,600 full- and part-time students who are enrolled in one of 135 majors that lead to baccalaureate degrees. MSUM is committed to excellence in science teaching and research for undergraduates.

View Article and Find Full Text PDF

A 66-kDa molecular weight protein with phospholipase D activity was solubilized and partially purified from rat liver plasma membrane. The activity and regulation of this phospholipase D have been characterized. Immunoblot analyses indicated that the enzyme was distinct from hPLD1 and PLD2, but was recognized by an antibody to the 12 terminal amino acids of PLD1.

View Article and Find Full Text PDF