Decades of geochronological work have shown the temporal distribution of zircon ages to be episodic on billion-year timescales and seemingly coincident with the lifecycle of supercontinents, but the physical processes behind this episodicity remain contentious. The dominant, end-member models of fluctuating magmatic productivity versus selective preservation of zircon during times of continental assembly have important and very different implications for long-term, global-scale phenomena, including the history of crustal growth, the initiation and evolution of plate tectonics, and the tempo of mantle outgassing over billions of years. Consideration of this episodicity has largely focused on the Precambrian, but here we analyze a large collection of Phanerozoic zircon ages in the context of global, full-plate tectonic models that extend back to the mid-Paleozoic.
View Article and Find Full Text PDFLong intervals of single geomagnetic polarity (superchrons) reflect geodynamo processes, driven by core-mantle boundary interactions; however, it is not clear what initiates the start and end of superchrons, other than superchrons probably reflect lower heat flow across the core-mantle boundary compared with adjacent intervals. Here geomagnetic polarity timescales, with confidence intervals, are constructed before and following the reverse polarity Kiaman (Carboniferous-Permian) and Moyero (Ordovician) superchrons, providing a window into the geodynamo processes. Similar to the Cretaceous, asymmetry in reversal rates is seen in the Palaeozoic superchrons, but the higher reversal rates imply higher heatflow thresholds for entering the superchron state.
View Article and Find Full Text PDFThe Anthropocene, an informal term used to signal the impact of collective human activity on biological, physical and chemical processes on the Earth system, is assessed using stratigraphic criteria. It is complex in time, space and process, and may be considered in terms of the scale, relative timing, duration and novelty of its various phenomena. The lithostratigraphic signal includes both direct components, such as urban constructions and man-made deposits, and indirect ones, such as sediment flux changes.
View Article and Find Full Text PDF