A control system model was developed to analyze data on in vivo coronary blood flow regulation and to probe how different mechanisms work together to control coronary flow from rest to exercise, and under a variety of experimental conditions, including cardiac pacing and with changes in coronary arterial pressure (autoregulation). In the model coronary flow is determined by the combined action of a feedback pathway signal that is determined by the level of plasma ATP in coronary venous blood, an adrenergic open-loop (feed-forward) signal that increases with exercise, and a contribution of pressure-mediated myogenic control. The model was identified based on data from exercise experiments where myocardial oxygen extraction, coronary flow, cardiac interstitial norepinephrine concentration, and arterial and coronary venous plasma ATP concentrations were measured during control and during adrenergic and purinergic receptor blockade conditions.
View Article and Find Full Text PDFDuring exercise, coronary blood flow increases to match the augmented myocardial oxygen demand because of tachycardia. Coronary vasodilation during exercise is via a combination of feedforward and feedback control mechanisms. Feedforward control is mediated by sympathetic β-adrenoceptor vasodilation.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
December 2010
The adenine nucleotide hypothesis postulates that the ATP released from red blood cells is broken down to ADP and AMP in coronary capillaries and that ATP, ADP, and AMP act on purinergic receptors on the surface of capillary endothelial cells. Purinergic receptor activation initiates a retrograde conducted vasodilator signal to the upstream arteriole that controls coronary blood flow in a negative feedback manner. A previous study (M.
View Article and Find Full Text PDFBackground: Human plasma ATP concentration is reported in many studies as roughly 1000 nmol/L. The present study tested the hypothesis that the measured plasma ATP concentration is lower if ATP release from formed blood elements is inhibited during blood sample processing. A second hypothesis was that pretreatment with aspirin to inhibit platelets would reduce the measured plasma concentration of ATP.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
April 2005
It has been proposed that alpha-adrenoceptor vasoconstriction in coronary resistance vessels results not from alpha-adrenoceptors on coronary smooth muscle but from alpha-adrenoceptors on cardiac myocytes that stimulate endothelin (ET) release. The present experiments tested the hypothesis that the alpha-adrenoceptor-mediated coronary vasoconstriction that normally occurs during exercise is due to endothelin. In conscious dogs (n = 10), the endothelin ET(A)/ET(B) receptor antagonist tezosentan (1 mg/kg iv) increased coronary venous oxygen tension at rest but not during treadmill exercise.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
April 2005
It was previously shown that red blood cells release ATP when blood oxygen tension decreases. ATP acts on microvascular endothelial cells to produce a retrograde conducted vasodilation (presumably via gap junctions) to the upstream arteriole. These observations form the basis for an ATP hypothesis of local metabolic control of coronary blood flow due to vasodilation in microvascular units where myocardial oxygen extraction is high.
View Article and Find Full Text PDFAt rest the myocardium extracts approximately 75% of the oxygen delivered by coronary blood flow. Thus there is little extraction reserve when myocardial oxygen consumption is augmented severalfold during exercise. There are local metabolic feedback and sympathetic feedforward control mechanisms that match coronary blood flow to myocardial oxygen consumption.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
September 2003
The role of P1 receptors and P2Y1 receptors in coronary vasodilator responses to adenine nucleotides was examined in the isolated guinea pig heart. Bolus arterial injections of nucleotides were made in hearts perfused at constant pressure. Peak increase in flow was measured before and after addition of purinoceptor antagonists.
View Article and Find Full Text PDFThe goal of this study was to identify the most important variables affecting bioluminescent ATP, ADP and AMP measurements in plasma and to develop an assay that takes these variables into account. Blood samples were drawn from conscious dogs. A 'stop solution' containing EDTA was prepared, which greatly retarded plasma ATP degradation by chelating Mg(+2) and Ca(+2) that are co-factors for many ATPases.
View Article and Find Full Text PDFUnder normal physiological conditions, coronary blood flow is closely matched with the rate of myocardial oxygen consumption. This matching of flow and metabolism is physiologically important due to the limited oxygen extraction reserve of the heart. Thus, when myocardial oxygen consumption is increased, as during exercise, coronary vasodilation and increased oxygen delivery are critical to preventing myocardial underperfusion and ischemia.
View Article and Find Full Text PDF