Publications by authors named "Mark W F Fischer"

Article Synopsis
  • The artillery fungus, Sphaerobolus, has a unique mechanism that allows it to launch spores farther than any other fungi, using a snap-through buckling process.
  • Research includes high-speed video to capture the spore-launching action, along with measurements of the force produced by the inner cup that expels the spores and analyses of their trajectory.
  • Despite consuming significantly more energy than typical mushrooms to release spores, this mechanism may be beneficial due to lower spore wastage compared to other fungal methods.
View Article and Find Full Text PDF

Unlike the mechanism of ballistospore discharge, which was not solved until the 1980s, the operation of asci as pressurized squirt guns is relatively straightforward and was understood in the nineteenth century. Since then, mycologists have sought to understand how structural adaptations to asci have allowed the ascomycetes to expel spores of different shapes and sizes over distances ranging from a few millimeters to tens of centimeters. These modifications include the use of valves at the tips of asci that maintain ascus pressure and expel spores at the highest speeds, and gelatinous appendages that connect spores after release and create larger projectiles with greater momentum than single spores.

View Article and Find Full Text PDF
Article Synopsis
  • Millions of tons of fungal spores, particularly from mushrooms, are released into the atmosphere annually and can serve as nuclei for water condensation in clouds.
  • Basidiospores, especially abundant above tropical forests, are discharged via a fluid droplet that evaporates when they become airborne, yet can reform in humid conditions.
  • This research indicates that mushroom spores play a crucial role in rainfall generation in specific ecosystems and highlights concerns about forest sustainability in relation to precipitation.
View Article and Find Full Text PDF

The distinctive shapes of basidiomata in the bird's nest fungi reflect differences in the mechanism of splash discharge. In the present study, peridiole discharge was examined in Nidularia pulvinata using high-speed video. Nidularia pulvinata produces globose basidiomata that split open at maturity to expose 100 or more peridioles within a gelatinous matrix.

View Article and Find Full Text PDF

The bird's nest fungi (Basidiomycota, Agaricales) package millions of spores into peridioles that are splashed from their basidiomata by the impact of raindrops. In this study we report new information on the discharge mechanism in Crucibulum and Cyathus species revealed with high-speed video. Peridioles were ejected at speeds of 1-5 m per second utilizing less than 2 % of the kinetic energy in falling raindrops.

View Article and Find Full Text PDF

This contribution is based on the six presentations given at the Special Interest Group meeting on Mathematical modelling of fungal growth and function held during IMC9. The topics covered aspects of fungal growth ranging across several orders of magnitude of spatial and temporal scales from the bio-mechanics of spore ejection, vesicle trafficking and hyphal tip growth to the form and function of mycelial networks. Each contribution demonstrated an interdisciplinary approach to questions at specific scales.

View Article and Find Full Text PDF

Viscous drag causes the rapid deceleration of fungal spores after high-speed launches and limits discharge distance. Stokes' law posits a linear relationship between drag force and velocity. It provides an excellent fit to experimental measurements of the terminal velocity of free-falling spores and other instances of low Reynolds number motion (Re<1).

View Article and Find Full Text PDF

Gilled mushrooms are produced by multiple orders within the Agaricomycetes. Some species form a single array of unbranched radial gills beneath their caps, many others produce multiple files of lamellulae between the primary gills, and branched gills are also common. In this largely theoretical study we modeled the effects of different gill arrangements on the total surface area for spore production.

View Article and Find Full Text PDF

Active discharge of basidiospores in most species of Basidiomycota is powered by the rapid movement of a droplet of fluid, called Buller's drop, over the spore surface. This paper is concerned with the operation of the launch mechanism in species with the largest and smallest ballistospores. Aleurodiscus gigasporus (Russulales) produces the largest basidiospores on record.

View Article and Find Full Text PDF

Background: Spore discharge in the majority of the 30,000 described species of Basidiomycota is powered by the rapid motion of a fluid droplet, called Buller's drop, over the spore surface. In basidiomycete yeasts, and phytopathogenic rusts and smuts, spores are discharged directly into the airflow around the fungal colony. Maximum discharge distances of 1-2 mm have been reported for these fungi.

View Article and Find Full Text PDF

Background: A variety of spore discharge processes have evolved among the fungi. Those with the longest ranges are powered by hydrostatic pressure and include "squirt guns" that are most common in the Ascomycota and Zygomycota. In these fungi, fluid-filled stalks that support single spores or spore-filled sporangia, or cells called asci that contain multiple spores, are pressurized by osmosis.

View Article and Find Full Text PDF