Publications by authors named "Mark Vogelsberger"

Impulsive supernova feedback and nonstandard dark matter models, such as self-interacting dark matter (SIDM), are the two main contenders for the role of the dominant core formation mechanism at the dwarf galaxy scale. Here we show that the impulsive supernova cycles that follow episodes of bursty star formation leave distinct features in the distribution function of stars: groups of stars with similar ages and metallicities develop overdense shells in phase space. If cores are formed through supernova feedback, we predict the presence of such features in star-forming dwarf galaxies with cored host halos.

View Article and Find Full Text PDF

We study evolution of self-interacting dark matter subhalos in the Milky Way tidal field. The interaction between the subhalos and the Milky Way's tides lead to more diverse dark matter distributions in the inner region, compared to their cold dark matter counterparts. We test this scenario with two Milky Way satellite galaxies, Draco and Fornax, opposite extremes in the inner dark matter content, and find that they can be accommodated within the self-interacting dark matter model proposed to explain the diverse rotation curves of spiral galaxies in the field.

View Article and Find Full Text PDF

In hierarchical models of structure formation, the first galaxies form in low-mass dark matter potential wells, probing the behavior of dark matter on kiloparsec scales. Even though these objects are below the detection threshold of current telescopes, future missions will open an observational window into this emergent world. In this Letter, we investigate how the first galaxies are assembled in a "fuzzy" dark matter (FDM) cosmology where dark matter is an ultralight ∼10^{-22}  eV boson and the primordial stars are expected to form along dense dark matter filaments.

View Article and Find Full Text PDF

We contrast predictions for the high-redshift galaxy population and reionization history between cold dark matter (CDM) and an alternative self-interacting dark matter model based on the recently developed ETHOS framework that alleviates the small-scale CDM challenges within the Local Group. We perform the highest resolution hydrodynamical cosmological simulations (a 36 Mpc volume with gas cell mass of ∼ 10 M and minimum gas softening of ∼ 180 pc) within ETHOS to date - plus a CDM counterpart - to quantify the abundance of galaxies at high redshift and their impact on reionization. We find that ETHOS predicts galaxies with higher ultraviolet (UV) luminosities than their CDM counterparts and a faster build-up of the faint end of the UV luminosity function.

View Article and Find Full Text PDF

We present a theoretical analysis of some unexplored aspects of relaxed Bose-Einstein condensate dark matter (BECDM) haloes. This type of ultralight bosonic scalar field dark matter is a viable alternative to the standard cold dark matter (CDM) paradigm, as it makes the same large-scale predictions as CDM and potentially overcomes CDM's small-scale problems via a galaxy-scale de Broglie wavelength. We simulate BECDM halo formation through mergers, evolved under the Schrödinger-Poisson equations.

View Article and Find Full Text PDF