Leveraging developments in microfabrication open new possibilities for optical manipulation. With the structural design freedom from three-dimensional printing capabilities of two-photon polymerization, we are starting to see the emergence of cleverly shaped 'light robots' or optically actuated micro-tools that closely resemble their macroscopic counterparts in function and sometimes even in form. In this work, we have fabricated a new type of light robot that is capable of loading and unloading cargo using photothermally induced convection currents within the body of the tool.
View Article and Find Full Text PDFImproving the resolution of biological research to the single-cell or sub-cellular level is of critical importance in a wide variety of processes and disease conditions. Most obvious are those linked to aging and cancer, many of which are dependent upon stochastic processes where individual, unpredictable failures or mutations in individual cells can lead to serious downstream conditions across the whole organism. The traditional tools of biochemistry struggle to observe such processes: the vast majority are based upon ensemble approaches analysing the properties of bulk populations, which means that details of individual constituents is lost.
View Article and Find Full Text PDFGeneralized Phase Contrast (GPC) is a versatile tool for efficiently rerouting and managing photon energy into speckle-free contiguous spatial light distributions. We have previously shown theoretically and numerically that a GPC Light Shaper shows robustness to shift in wavelength and can maintain both projection length scale and high efficiency over a range [0.75λ(0); 1.
View Article and Find Full Text PDFGeneralized Phase Contrast (GPC) is an efficient method for generating speckle-free contiguous optical distributions useful in diverse applications such as static beam shaping, optical manipulation and, recently, for excitation in two-photon optogenetics. GPC allows efficient utilization of typical Gaussian lasers in such applications using binary-only phase modulation. In this work, we experimentally verify previously derived conditions for photon-efficient light shaping with GPC [Opt.
View Article and Find Full Text PDFWe have previously proposed and demonstrated the targeted-light delivery capability of wave-guided optical waveguides (WOWs). As the WOWs are maneuvered in 3D space, it is important to maintain efficient light coupling through the waveguides within their operating volume. We propose the use of dynamic diffractive techniques to create diffraction-limited spots that will track and couple to the WOWs during operation.
View Article and Find Full Text PDFWe present a method of reshaping light in three dimensions via phase modulation. The method calculates the target computer-generated hologram individually and adds to it an appropriate transfer function to translate the reconstruction to any location in space. We are able to simultaneously generate independently controlled arbitrary patterns at different positions using a single laser beam.
View Article and Find Full Text PDFGeneralized Phase Contrast (GPC) is an efficient method for generating speckle-free contiguous optical distributions useful in diverse applications such as static beam shaping, optical manipulation and recently, for excitation in two-photon optogenetics. To fully utilize typical Gaussian lasers in such applications, we analytically derive conditions for photon efficient light shaping with GPC. When combined with the conditions for optimal contrast developed in previous works, our analysis further simplifies GPC's implementation.
View Article and Find Full Text PDF