Publications by authors named "Mark Villamil"

Understanding the normal function of the Huntingtin (HTT) protein is of significance in the design and implementation of therapeutic strategies for Huntington's disease (HD). Expansion of the CAG repeat in the gene, encoding an expanded polyglutamine (polyQ) repeat within the HTT protein, causes HD and may compromise HTT's normal activity contributing to HD pathology. Here, we investigated the previously defined role of HTT in autophagy specifically through studying HTT's association with ubiquitin.

View Article and Find Full Text PDF

Mislocalization of overexpressed CENP-A (Cse4 in budding yeast, Cnp1 in fission yeast, CID in flies) contributes to chromosomal instability (CIN) in yeasts, flies, and human cells. Mislocalization of CENP-A is observed in many cancers and this correlates with poor prognosis. Structural mechanisms that contribute to mislocalization of CENP-A are poorly defined.

View Article and Find Full Text PDF

Protein ubiquitylation is an important posttranslational modification that governs most cellular processes. Signaling functions of ubiquitylation are very diverse and involve proteolytic as well as nonproteolytic events, such as localization, regulation of protein interactions, and control of protein activity. The intricacy of ubiquitin signaling is further complicated by several different polyubiquitin chain types that are likely recognized and interpreted by different protein readers.

View Article and Find Full Text PDF

A surprising complexity of ubiquitin signaling has emerged with identification of different ubiquitin chain topologies. However, mechanisms of how the diverse ubiquitin codes control biological processes remain poorly understood. Here, we use quantitative whole-proteome mass spectrometry to identify yeast proteins that are regulated by lysine 11 (K11)-linked ubiquitin chains.

View Article and Find Full Text PDF

Deregulation of ubiquitin conjugation or deconjugation has been implicated in the pathogenesis of many human diseases including cancer. The deubiquitinating enzyme USP1 (ubiquitin-specific protease 1), in association with UAF1 (USP1-associated factor 1), is a known regulator of DNA damage response and has been shown as a promising anticancer target. To further evaluate USP1/UAF1 as a therapeutic target, we conducted a quantitative high throughput screen of >400000 compounds and subsequent medicinal chemistry optimization of small molecules that inhibit the deubiquitinating activity of USP1/UAF1.

View Article and Find Full Text PDF

Protein ubiquitination and deubiquitination are central to the control of a large number of cellular pathways and signaling networks in eukaryotes. Although the essential roles of ubiquitination have been established in the eukaryotic DNA damage response, the deubiquitination process remains poorly defined. Chemical probes that perturb the activity of deubiquitinases (DUBs) are needed to characterize the cellular function of deubiquitination.

View Article and Find Full Text PDF

Ubiquitination has emerged as an essential signaling mechanism in eukaryotes. Deubiquitinases (DUBs) counteract the activities of the ubiquitination machinery and provide another level of control in cellular ubiquitination. Not surprisingly, DUBs are subjected to stringent regulations.

View Article and Find Full Text PDF

Deubiquitinating enzymes (DUBs) are important for the normal function of a number of cellular processes, including transcriptional regulation, cell cycle control, and DNA damage response. The enzymatic activity of DUB is regulated by different mechanisms. DUBs in several different families are post-translationally modified by phosphorylation.

View Article and Find Full Text PDF

Unrepaired DNA damage may arrest ongoing replication forks, potentially resulting in fork collapse, increased mutagenesis and genomic instability. Replication through DNA lesions depends on mono- and polyubiquitylation of proliferating cell nuclear antigen (PCNA), which enable translesion synthesis (TLS) and template switching, respectively. A proper replication fork rescue is ensured by the dynamic ubiquitylation and deubiquitylation of PCNA; however, as yet, little is known about its regulation.

View Article and Find Full Text PDF

Ubiquitin-specific proteases (USPs) constitute the largest family of the human deubiquitinating enzymes. USP1 belongs to the cysteine protease family and contains a catalytic triad comprised of C90, H593, and D751. Notably, the catalytic activity of USP1 is stimulated through the formation of a tight complex with a WD40 repeat protein UAF1 (USP1-associated factor 1).

View Article and Find Full Text PDF

Ubiquitin-specific proteases (USPs) have in recent years emerged as a promising therapeutic target class. We identified selective small-molecule inhibitors against a deubiquitinase complex, the human USP1/UAF1, through quantitative high throughput screening (qHTS) of a collection of bioactive molecules. The top inhibitors, pimozide and GW7647, inhibited USP1/UAF1 noncompetitively with a K(i) of 0.

View Article and Find Full Text PDF