The amount of bony support by the glenoid can be determined using the glenohumeral index, i.e. the maximum anteroposterior (AP) diameter of the humeral head divided by the maximum AP dimension of the glenoid.
View Article and Find Full Text PDFAnalytical flow cytometry (FCM) is well suited for the analysis of phytoplankton communities in fresh and sea waters. The measurement of light scatter and autofluorescence properties of particles by FCM provides optical fingerprints, which enables different phytoplankton groups to be separated. A submersible version of the CytoSense flow cytometer (the CytoSub) has been designed for in situ autonomous sampling and analysis, making it possible to monitor phytoplankton at a short temporal scale and obtain accurate information about its dynamics.
View Article and Find Full Text PDFHeterogeneity within natural phytoplankton communities makes it very difficult to analyze parameters at the single-cell level. Flow cytometric sorting is therefore a useful tool in aquatic sciences, as it provides material for post-sort analysis and culturing. Sorting subpopulations from natural communities, however, often requires handling morphologically diverse and complex particles with various abundances.
View Article and Find Full Text PDFEight field campaigns in the eutrophic, shallow, Lake Taihu in the summers from 2005 to 2007, and a phytoplankton degradation experiment of 33 days, were carried out to determine the contribution of phytoplankton degradation to CDOM. Significant and positive correlations were found between the CDOM absorption coefficient at 355 nm [a(CDOM)(355)], normalized fluorescence emission (QSU) at 450 nm from excitation at 355 nm [F(n)(355)], and the chlorophyll a (Chla) concentration for all eight field campaigns, which indicates that the decomposition and degradation of phytoplankton is an important source of CDOM. In the degradation experiment, the CDOM absorption coefficient increased as phytoplankton broke down during the first 12 days, showing the production of CDOM from phytoplankton.
View Article and Find Full Text PDFAlthough phenotypic plasticity can be advantageous in fluctuating environments, it may come too late if the environment changes fast. Complementary chromatic adaptation is a colorful form of phenotypic plasticity, where cyanobacteria tune their pigmentation to the prevailing light spectrum. Here, we study the timescale of chromatic adaptation and its impact on competition among phytoplankton species exposed to fluctuating light colors.
View Article and Find Full Text PDFHere we present version 2.0 of HADDOCK, which incorporates considerable improvements and new features. HADDOCK is now able to model not only protein-protein complexes but also other kinds of biomolecular complexes and multi-component (N > 2) systems.
View Article and Find Full Text PDF