J Steroid Biochem Mol Biol
July 2013
The odd-skipped related genes Osr1 and Osr2 encode closely related zinc finger containing transcription factors that are expressed in developing limb. However, their role in osteoblast proliferation and differentiation remains controversial and little is known about their regulation. In this study we showed that both Osr1 and Osr2 were expressed in several murine and human osteoblast cell lines as well as in primary osteoblast cultures.
View Article and Find Full Text PDFThe active form of vitamin D3, 1alpha,25-dihydroxyvitamin D3 [1,25(OH)2D3], is an important regulator of bone metabolism, calcium and phosphate homeostasis but also has potent antiproliferative and pro-differentiating effects on a wide variety of cell types. To identify key genes that are (directly) regulated by 1,25(OH)2D3, a large number of microarray studies have been performed on different types of cancer cells (prostate, breast, ovarian, colorectal, squamous cell carcinoma and leukemia). The variety of target genes identified through these studies reflects the pleiotropic action of 1,25(OH)2D3.
View Article and Find Full Text PDFA previous cDNA microarray analysis in murine MC3T3-E1 osteoblasts revealed a cluster of genes involved in cell cycle progression that was significantly down-regulated after a single treatment with 1alpha,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] [L. Verlinden, G. Eelen, I.
View Article and Find Full Text PDF1,25-Dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) has potent antiproliferative effects characterized by a hampered G(1)/S transition. cDNA microarrays were used to monitor expression of 21,492 genes in MC3T3-E1 mouse osteoblasts at 1, 6, 12, 24, and 36 h after treatment with 1,25(OH)(2)D(3). Statistical analysis revealed a cluster of genes that were strongly down-regulated by 1,25(OH)(2)D(3) and which not only function in cell cycle regulation and DNA replication but also mediate checkpoint control, DNA repair, chromosome modifications, and mitosis.
View Article and Find Full Text PDFJ Steroid Biochem Mol Biol
October 2005
The active form of Vitamin D, 1alpha,25-dihydroxyvitamin D(3) [1,25-(OH)(2)D(3)], has potent antiproliferative actions on various normal and malignant cells. Calcemic effects, however, hamper therapeutic application of 1,25-(OH)(2)D(3) in hyperproliferative diseases. Two 14-epi-analogs of 1,25-(OH)(2)D(3) namely 19-nor-14-epi-23-yne-1,25-(OH)(2)D(3) (TX522) and 19-nor-14,20-bisepi-23-yne-1,25-(OH)(2)D(3) (TX527), display reduced calcemic effects coupled to an (at least 10-fold) increased antiproliferative potency when compared with 1,25-(OH)(2)D(3).
View Article and Find Full Text PDFJ Steroid Biochem Mol Biol
May 2004
The active form of Vitamin D, 1alpha,25-dihydroxyvitamin D(3) [1,25-(OH)(2)D(3)], demonstrates potent antiproliferative actions on normal as well as on malignant cell types by blocking the transition from the G1- to the S-phase of the cell cycle. Key target genes for 1,25-(OH)(2)D(3) in this non-classic effect remain largely unknown. Therefore, this study aims to identify genes that, through changes in expression after 1,25-(OH)(2)D(3) treatment, contribute to the observed antiproliferative effect.
View Article and Find Full Text PDFUnlabelled: To identify key genes in the antiproliferative action of 1,25(OH)2D3, MC3T3-E1 mouse osteoblasts were subjected to cDNA microarray analyses. Eleven E2F-driven DNA replication genes were downregulated by 1,25(OH)2D3. These results were confirmed by quantitative RT-PCR in different cell types, showing the general nature of this action of 1,25(OH)2D3.
View Article and Find Full Text PDFHere, we report on the identification of nucleolar spindle-associated protein (NuSAP), a novel 55-kD vertebrate protein with selective expression in proliferating cells. Its mRNA and protein levels peak at the transition of G2 to mitosis and abruptly decline after cell division. Microscopic analysis of both fixed and live mammalian cells showed that NuSAP is primarily nucleolar in interphase, and localizes prominently to central spindle microtubules during mitosis.
View Article and Find Full Text PDF