Background: The cause of neurodegeneration in progressive forms of multiple sclerosis is unknown. We investigated the impact of specific neuroinflammatory markers on human neurons to identify potential therapeutic targets for neuroprotection against chronic inflammation.
Methods: Surface immunocytochemistry directly visualized protease-activated receptor-1 (PAR1) and interleukin-1 (IL-1) receptors on neurons in human postmortem cortex in patients with and without neuroinflammatory lesions.
Peptidylprolyl isomerase cyclophilins play critical roles in a variety of biological processes. Recent findings that cyclophilins are present at high levels in the CNS and that cyclosporin A may possess neuroprotective/neurotrophic effects have prompted us to search for nonimmunosuppressant small molecule cyclophilin ligands. To this end, we report the lead identification through "virtual screening" and the synthesis of our first series of non-peptidic cyclophilin ligands, along with the preliminary biological results.
View Article and Find Full Text PDFThe recent discovery that small molecule ligands for the peptidyl-prolyl isomerase (PPIase) FKBP12 possess powerful neuroprotective and neuroregenerative properties in vitro and in vivo suggests therapeutic utility for such compounds in neurodegenerative disease. The neurotrophic effects of these compounds are independent of the immunosuppressive pathways by which drugs such as FK506 and rapamycin operate. Previous work by ourselves and other groups exploring the structure-activity relationships (SAR) of small molecules that mimic only the FKBP binding domain portion of FK506 has focused on esters of proline and pipecolic acid.
View Article and Find Full Text PDFUsing simple, inexpensive equipment, we have used solution-phase parallel synthesis to rapidly prepare hundreds of sulfonamide- and urea-containing FKBP inhibitors, resulting in rapid identification of extremely potent compounds in these series.
View Article and Find Full Text PDF