Publications by authors named "Mark Tondra"

In order for Magnetoresistive Biosensor technology to become a mainstream product for clinical and consumer use, several outstanding technical issues must be solved. This paper will focus on one of those issues, which is the need to adapt standard semiconductor packaging processes to fall within some biosensor fabrication process constraints. A set of materials and interconnection methods that meet these biosensor requirements are presented.

View Article and Find Full Text PDF

Microfabricated devices formed from alternating layers of magnetic and nonmagnetic materials at combined thicknesses of a few hundred nanometers exhibit a phenomenon known as the giant magnetoresistance effect. Devices based on this effect are known as giant magnetoresistive (GMR) sensors. The resistance of a GMR is dependent on the strength of an external magnetic field, which has resulted in the widespread usage of such platforms in high-speed, high-data density storage drives.

View Article and Find Full Text PDF

This paper describes efforts aimed at setting the stage for the application of giant magnetoresistance sensor (GMRs) networks as readers for quantification of biolytes selectively captured and then labeled with superparamagnetic particles on a scanned chip-scale array. The novelty and long-range goal of this research draws from the potential development of a card-swipe instrument through which an array of micrometer-sized, magnetically tagged addresses (i.e.

View Article and Find Full Text PDF

Thin structures of alternating magnetic and nonmagnetic layers with a total thickness of a few hundred nanometers exhibit a phenomenon known as giant magnetoresistance. The resistance of microfabricated giant magnetoresistors (GMRs) is dependent on the strength of an external magnetic field. This paper examines magnetic labeling methodologies and surface derivatization approaches based on protein-protein binding that are aimed at forming a general set of protocols to move GMR concepts into the bioanalytical arena.

View Article and Find Full Text PDF