Publications by authors named "Mark Talary"

Background: Extensive past work showed that noninvasive continuous glucose monitoring with a wearable Multisensor device worn on the upper arm provides useful information about glucose trends to improve diabetes therapy in controlled and semicontrolled conditions.

Methods: To test previous findings also in uncontrolled in-clinic and outpatient conditions, a long-term study has been conducted to collect Multisensor and reference glucose data in a population of 20 type 1 diabetes subjects. A total of 1072 study days were collected and a fully on-line compatible algorithmic routine linking Multisensor data to glucose applied to estimate glucose trends noninvasively.

View Article and Find Full Text PDF

Background: Extensive past work showed that noninvasive continuous glucose monitoring with a wearable multisensor device worn on the upper arm provides useful information about glucose trends to improve diabetes therapy in controlled and semicontrolled conditions.

Method: To test previous findings also in uncontrolled conditions, a long term at home study has been organized to collect multisensor and reference glucose data in a population of 20 type 1 diabetes subjects. A total of 1072 study days were collected and a fully on-line compatible algorithmic routine linking multisensor data to glucose applied to estimate glucose levels noninvasively.

View Article and Find Full Text PDF

Background: We study here the influence of different patients and the influence of different devices with the same patients on the signals and modeling of data from measurements from a noninvasive Multisensor glucose monitoring system in patients with type 1 diabetes. The Multisensor includes several sensors for biophysical monitoring of skin and underlying tissue integrated on a single substrate.

Method: Two Multisensors were worn simultaneously, 1 on the upper left and 1 on the upper right arm by 4 patients during 16 study visits.

View Article and Find Full Text PDF

In diabetes research, non-invasive continuous glucose monitoring (NI-CGM) devices represent a new and appealing frontier. In the last years, some multi-sensor devices for NI-CGM have been proposed, which exploit several sensors measuring phenomena of different nature, not only for measuring glucose related signals, but also signals reflecting some possible perturbing processes (temperature, blood perfusion). Estimation of glucose levels is then obtained combining these signals through a mathematical model which requires an initial calibration step exploiting one reference blood glucose (RBG) sample.

View Article and Find Full Text PDF

In this, the third part of our series on the dielectric spectrum symmetrical broadening of water, we consider the nucleotide aqueous solutions. Where in Parts I [E. Levy et al.

View Article and Find Full Text PDF

Non-invasive continuous glucose monitoring (NI-CGM) sensors are still at an early stage of development, but, in the near future, they could become particularly appealing in diabetes management. Solianis Monitoring AG (Zurich, Switzerland) has proposed an approach for NI-CGM based on a multi-sensor concept, embedding primarily dielectric spectroscopy and optical sensors. This concept requires a mathematical model able to estimate glucose levels from the 150 channels directly measured through the Multisensor.

View Article and Find Full Text PDF

New scenarios in diabetes treatment have been opened in the last ten years by continuous glucose monitoring (CGM) sensors. In particular, Non-Invasive CGM sensors are particularly appealing, even though they are still at an early stage of development. Solianis Monitoring AG (Zürich, Switzerland) has proposed an approach based on a multisensor concept, embedding primarily dielectric spectroscopy and optical sensors.

View Article and Find Full Text PDF

The sensitivity and specificity of dielectric spectroscopy for the detection of dielectric changes inside a multi-layered structure is investigated. We focus on providing a base for sensing physiological changes in the human skin, i.e.

View Article and Find Full Text PDF

Background: Impedance spectroscopy has been shown to be a candidate for noninvasive continuous glucose monitoring in humans. However, in addition to glucose, other factors also have effects on impedance characteristics of the skin and underlying tissue.

Method: Impedance spectra were summarized through a principal component analysis and relevant variables were identified with Akaike's information criterion.

View Article and Find Full Text PDF

Hyperglycaemia is well known to cause reductions in plasma Na(+) levels or even hyponatraemia due to an osmotically induced dilution of the interstitium and blood. It is, however, unclear whether this dilution is significantly counteracted by ion regulatory homeostatic mechanism(s) or not. Furthermore, the effects of moderate hyperglycaemia on other major ions are less well known.

View Article and Find Full Text PDF

The Multisensor Glucose Monitoring System (MGMS) features non invasive sensors for dielectric characterisation of the skin and underlying tissue in a wide frequency range (1 kHz-100 MHz, 1 and 2 GHz) as well as optical characterisation. In this paper we describe the results of using an MGMS in a miniaturised housing with fully integrated sensors and battery. Six patients with Type I Diabetes Mellitus (age 44±16 y; BMI 24.

View Article and Find Full Text PDF

It is widely accepted that noninvasive glucose monitoring (NIGM) has the potential to revolutionize diabetes therapy. However, current approaches to NIGM studied to date have not yet demonstrated a level of acceptable functionality to allow real-time use, beyond restricted fields of application. A number of reviews have been devoted to the subject of NIGM with different focuses related to challenges and a description of the respective underlying problems.

View Article and Find Full Text PDF

The human skin consists of several layers with distinct dielectric properties. Resolving the impact of changes in dielectric parameters of skin layers and predicting them allows for non-invasive sensing in medical diagnosis. So far no complete skin and underlying tissue model is available for this purpose in the MHz range.

View Article and Find Full Text PDF

In vivo variations of blood glucose (BG) are affecting the biophysical characteristics (e.g. dielectric and optical) of skin and underlying tissue (SAUT) at various frequencies.

View Article and Find Full Text PDF

We propose a key role for the glucose transporter 1 (GLUT1) in mediating the observed changes in the dielectric properties of human erythrocyte membranes as determined by dielectric spectroscopy. Cytochalasin B, a GLUT1 transport inhibitor, abolished the membrane capacitance changes in glucose-exposed red cells. Surprisingly, D-fructose, known to be transported primarily by GLUT5, exerted similar membrane capacitance changes at increasing D-fructose concentrations.

View Article and Find Full Text PDF

Non-invasive glucose monitoring techniques based on impedance spectroscopy are affected by a variety of perturbing effects. In order to use the impedance as a glucose measure, these perturbing effects need to be quantified and compensated. Since effects induced by temperature fluctuations certainly rank among the severest perturbations, a clinical study was carried out to establish whether temperature, as a perturbing factor, could be compensated for in impedance spectroscopy.

View Article and Find Full Text PDF

Human T lymphocytes were stimulated using phorbol myristate acetate and ionomycin. Twenty-four hours post-activation the cells were harvested for DNA content and for measurements using a newly developed cell profiling system employing dielectrophoresis. This system provides individual cell size and dielectrophoresis data for statistically relevant numbers of control and activated cells.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session7e5h912tsft866rp46vq023sogm5e79a): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once