A novel electromechanical chaotic oscillator is described that admits an exact analytic solution. The oscillator is a hybrid dynamical system with governing equations that include a linear second order ordinary differential equation with negative damping and a discrete switching condition that controls the oscillatory fixed point. The system produces provably chaotic oscillations with a topological structure similar to either the Lorenz butterfly or Rössler's folded-band oscillator depending on the configuration.
View Article and Find Full Text PDFAcoustic experiments demonstrate a novel approach to ranging and detection that exploits the properties of a solvable chaotic oscillator. This nonlinear oscillator includes an ordinary differential equation and a discrete switching condition. The chaotic waveform generated by this hybrid system is used as the transmitted waveform.
View Article and Find Full Text PDFA novel chaotic oscillator is shown to admit an exact analytic solution and a simple matched filter. The oscillator is a hybrid dynamical system including both a differential equation and a discrete switching condition. The analytic solution is written as a linear convolution of a symbol sequence and a fixed basis function, similar to that of conventional communication waveforms.
View Article and Find Full Text PDFWe examine chains of unidirectionally coupled oscillators in which time-shifted synchronization occurs without explicit delays in the coupling. In numerical simulations and in an experimental system of electronic oscillators, we examine the time shift and the degree of distortion (primarily in the form of attenuation) of the waveforms of the oscillators located far from the drive oscillator. Surprisingly, under weak coupling we observe minimal attenuation in spite of a significant total time shift.
View Article and Find Full Text PDF