Publications by authors named "Mark T Mitchison"

Understanding the entropy production of systems strongly coupled to thermal baths is a core problem of both quantum thermodynamics and mesoscopic physics. While many techniques exist to accurately study entropy production in such systems, they typically require a microscopic description of the baths, which can become numerically intractable to study for large systems. Alternatively an open-systems approach can be employed with all the nuances associated with various levels of approximation.

View Article and Find Full Text PDF

In order to unitarily evolve a quantum system, an agent requires knowledge of time, a parameter that no physical clock can ever perfectly characterize. In this Letter, we study how limitations on acquiring knowledge of time impact controlled quantum operations in different paradigms. We show that the quality of timekeeping an agent has access to limits the circuit complexity they are able to achieve within circuit-based quantum computation.

View Article and Find Full Text PDF

Recent experiments have demonstrated the generation of coherent mechanical oscillations in a suspended carbon nanotube, which are driven by an electric current through the device above a certain voltage threshold, in close analogy with a lasing transition. We investigate this phenomenon from the perspective of work extraction, by modeling a nanoelectromechanical device as a quantum flywheel or battery that converts electrical power into stored mechanical energy. We introduce a microscopic model that qualitatively matches the experimental finding, and we compute the Wigner function of the quantum vibrational mode in its nonequilibrium steady state.

View Article and Find Full Text PDF

We study two-dimensional bosonic and fermionic lattice systems under nonequilibrium conditions corresponding to a sharp gradient of temperature imposed by two thermal baths. In particular, we consider a lattice model with broken time-reversal symmetry that exhibits both topologically trivial and nontrivial phases. Using a nonperturbative Green function approach, we characterize the nonequilibrium current distribution in different parameter regimes.

View Article and Find Full Text PDF

Out-of-time-order correlators (OTOCs) have become established as a tool to characterise quantum information dynamics and thermalization in interacting quantum many-body systems. It was recently argued that the expected exponential growth of the OTOC is connected to the existence of correlations beyond those encoded in the standard Eigenstate Thermalization Hypothesis (ETH). We show explicitly, by an extensive numerical analysis of the statistics of operator matrix elements in conjunction with a detailed study of OTOC dynamics, that the OTOC is indeed a precise tool to explore the fine details of the ETH.

View Article and Find Full Text PDF

Fluctuations strongly affect the dynamics and functionality of nanoscale thermal machines. Recent developments in stochastic thermodynamics have shown that fluctuations in many far-from-equilibrium systems are constrained by the rate of entropy production via so-called thermodynamic uncertainty relations. These relations imply that increasing the reliability or precision of an engine's power output comes at a greater thermodynamic cost.

View Article and Find Full Text PDF

Information is physical but information is also processed in finite time. Where computing protocols are concerned, finite-time processing in the quantum regime can dynamically generate coherence. Here we show that this can have significant thermodynamic implications.

View Article and Find Full Text PDF

The precise measurement of low temperatures is a challenging, important, and fundamental task for quantum science. In particular, in situ thermometry is highly desirable for cold atomic systems due to their potential for quantum simulation. Here, we demonstrate that the temperature of a noninteracting Fermi gas can be accurately inferred from the nonequilibrium dynamics of impurities immersed within it, using an interferometric protocol and established experimental methods.

View Article and Find Full Text PDF

We realize a heat engine using a single-electron spin as a working medium. The spin pertains to the valence electron of a trapped ^{40}Ca^{+} ion, and heat reservoirs are emulated by controlling the spin polarization via optical pumping. The engine is coupled to the ion's harmonic-oscillator degree of freedom via spin-dependent optical forces.

View Article and Find Full Text PDF