Publications by authors named "Mark T Greenaway"

Ferroelectrics based on van der Waals semiconductors represent an emergent class of materials for disruptive technologies ranging from neuromorphic computing to low-power electronics. However, many theoretical predictions of their electronic properties have yet to be confirmed experimentally and exploited. Here, we use nanoscale angle-resolved photoemission electron spectroscopy and optical transmission in high magnetic fields to reveal the electronic band structure of the van der Waals ferroelectric indium selenide (α-InSe).

View Article and Find Full Text PDF

Coulomb drag between adjacent electron and hole gases has attracted considerable attention, being studied in various two-dimensional systems, including semiconductor and graphene heterostructures. Here we report measurements of electron-hole drag in the Planckian plasma that develops in monolayer graphene in the vicinity of its Dirac point above liquid-nitrogen temperatures. The frequent electron-hole scattering forces minority carriers to move against the applied electric field due to the drag induced by majority carriers.

View Article and Find Full Text PDF

2D semiconductors can drive advances in quantum science and technologies. However, they should be free of any contamination; also, the crystallographic ordering and coupling of adjacent layers and their electronic properties should be well-controlled, tunable, and scalable. Here, these challenges are addressed by a new approach, which combines molecular beam epitaxy and in situ band engineering in ultra-high vacuum of semiconducting gallium selenide (GaSe) on graphene.

View Article and Find Full Text PDF

We use phenomenological modelling and detailed experimental studies of charge carrier transport to investigate the dependence of the electrical resistivity,, on gate voltage,, for a series of monolayer graphene field effect transistors with mobilities,, ranging between 5000 and 250 000 cmVsat low-temperature. Our measurements over a wide range of temperatures from 4 to 400 K can be fitted by the universal relationμ=4/eδnmaxfor all devices, whereρmaxis the resistivity maximum at the neutrality point andis an 'uncertainty' in the bipolar carrier density, given by the full width at half maximum of the resistivity peak expressed in terms of carrier density,. This relation is consistent with thermal broadening of the carrier distribution and the presence of the disordered potential landscape consisting of so-called electron-hole puddles near the Dirac point.

View Article and Find Full Text PDF