Publications by authors named "Mark Stasiak"

The purpose of this study is to establish a small animal anterior cruciate ligament (ACL) reconstruction research model where ACL graft force can be varied to create different graft force patterns with controlled knee motion. Cadaveric ( = 10) and in vivo ( = 10) rat knees underwent ACL resection followed by reconstruction using a soft tissue autograft. Five cadaveric and five in vivo knees received a nonisometric, high-force femoral graft tunnel position.

View Article and Find Full Text PDF

The optimal mechanical loading regimen for the healing of a tendon graft in a bone tunnel is unknown. We developed a rat model that directly tensions a healing tendon graft, without the use of confounding joint motion. Fifty cycles of either 0, 3, or 6 N of tension were applied to groups daily for 3 or 6 weeks.

View Article and Find Full Text PDF

Background: We previously demonstrated, in a rat anterior cruciate ligament (ACL) graft reconstruction model, that the delayed application of low-magnitude-strain loading resulted in improved tendon-to-bone healing compared with that observed after immediate loading and after prolonged immobilization. The purpose of this study was to determine the effect of higher levels of strain loading on tendon-to-bone healing.

Methods: ACL reconstruction was carried out in a rat model in three randomly assigned groups: high-strain daily loading beginning on either (1) postoperative day one (immediate-loading group; n = 7) or (2) postoperative day four (delayed-loading group; n = 11) or (3) after prolonged immobilization (immobilized group; n = 8).

View Article and Find Full Text PDF

Background: Joint motion is commonly prescribed after tendon repair surgeries such as rotator cuff repairs; however, the ideal rehabilitation program to optimize tendon-to-bone healing is unknown.

Hypotheses: (1) Delayed loading would result in a mechanically stronger and better organized tendon-to-bone interface compared with prolonged immobilization or immediate loading. (2) Low-magnitude load would lead to superior healing compared with high-magnitude load.

View Article and Find Full Text PDF

We designed and validated a novel device for applying flexion-extension cycles to a rat knee in an in vivo model of anterior cruciate ligament reconstruction (ACL-R). Our device is intended to simulate rehabilitation motion and exercise post ACL-R to optimize physical rehabilitation treatments for the improved healing of tendon graft ligament reconstructions. The device was validated for repeatability of the knee kinematic motion by measuring the force versus angular rotation response from repeated trials using cadaver rats.

View Article and Find Full Text PDF

Background: Successful anterior cruciate ligament reconstruction with use of soft-tissue grafts requires healing between tendon and bone. Little is known about the effect of mechanical load on the cellular and molecular cascade of tendon-to-bone healing. Understanding these mechanical influences has critical implications for postoperative rehabilitation following anterior cruciate ligament reconstruction.

View Article and Find Full Text PDF

Background: Modulation of the mechanical environment may profoundly affect the healing tendon graft-bone interface. The purpose of this study was to determine how controlled axial loading after anterior cruciate ligament reconstruction affects tendon-to-bone healing. Our hypothesis was that controlled cyclic axial loading after a period of immobilization would improve tendon-to-bone healing compared with that associated with immediate axial loading or prolonged immobilization.

View Article and Find Full Text PDF

We designed and validated a novel knee joint fixation/distraction system to study tendon-to-bone healing in an in vivo rat model of anterior cruciate ligament (ACL) reconstruction. The system uses an external fixator to apply a cyclic distraction of the knee joint while monitoring the resultant force developed across the joint, thus providing a temporal indication of structural changes during the healing process of the bone-tendon-bone reconstruction. The validation was performed using an optical kinematic tracking system to determine the local displacement of the knee.

View Article and Find Full Text PDF