Publications by authors named "Mark Snee"

Microbial recognition is a key step in regulating the immune signaling pathways of multicellular organisms. Peptidoglycan, a component of the bacterial cell wall, exhibits immune stimulating activity in both plants and animals. Lysin motif domain (LysMD) family proteins are ancient peptidoglycan receptors that function in bacteriophage and plants.

View Article and Find Full Text PDF

We describe a new methodology for genetically labeling single cell lineages in Drosophila called DMARCM. The system offers ultra-low frequency labeling, linear induction, consistent labeling among individuals and virtually no background signal. We compare this technique to an existing approach, which has been widely adopted.

View Article and Find Full Text PDF

Localization of mRNAs can involve multiple steps, each with its own -acting localization signals and transport factors. How is the transition between different steps orchestrated? We show that the initial step in localization of mRNA - transport from nurse cells to the oocyte - relies on multiple -acting signals. Some of these are binding sites for the translational control factor Bruno, suggesting that Bruno plays an additional role in mRNA transport.

View Article and Find Full Text PDF

The extracellular matrix (ECM) regulates cell migration and sculpts organ shape. AdamTS proteins are extracellular metalloproteases known to modify ECM proteins and promote cell migration, but demonstrated roles for AdamTS proteins in regulating CNS structure and ensuring cell lineages remain fixed in place have not been uncovered. Using forward genetic approaches in , we find that reduction of function induces both the mass exodus of neural lineages out of the CNS and drastic perturbations to CNS structure.

View Article and Find Full Text PDF

Dis3 encodes a conserved RNase that degrades or processes all RNA species via an N-terminal PilT N terminus (PIN) domain and C-terminal RNB domain that harbor, respectively, endonuclease activity and 3'-5' exonuclease activity. In Schizosaccharomyces pombe, dis3 mutations cause chromosome missegregation and failure in mitosis, suggesting dis3 promotes cell division. In humans, apparently hypomorphic dis3 mutations are found recurrently in multiple myeloma, suggesting dis3 opposes cell division.

View Article and Find Full Text PDF

Unlabelled: Very-late-antigen-4 (VLA-4, α4β1 integrin, CD49d/CD29) is a transmembrane adhesion receptor that plays an important role in cancer and immune responses. Enhanced VLA-4 expression has been observed in multiple myeloma (MM) cells and surrounding stroma. VLA-4 conformational activation has been associated with MM pathogenesis.

View Article and Find Full Text PDF

Asymmetric positioning of proteins within cells is crucial for cell polarization and function. Deployment of Oskar protein at the posterior pole of the Drosophila oocyte relies on localization of the oskar mRNA, repression of its translation prior to localization, and finally activation of translation. Translational repression is mediated by BREs, regulatory elements positioned in two clusters near both ends of the oskar mRNA 3' UTR.

View Article and Find Full Text PDF

Sponge bodies, cytoplasmic structures containing post-transcriptional regulatory factors, are distributed throughout the nurse cells and oocytes of the Drosophila ovary and share components with P bodies of yeast and mammalian cells. We show that sponge body composition differs between nurse cells and the oocyte, and that the sponge bodies change composition rapidly after entry into the oocyte. We identify conditions that affect sponge body organization.

View Article and Find Full Text PDF

Background: The Drosophila ovary is a tissue rich in post-transcriptional regulation of gene expression. Many of the regulatory factors are proteins identified via genetic screens. The more recent discovery of microRNAs, which in other animals and tissues appear to regulate translation of a large fraction of all mRNAs, raised the possibility that they too might act during oogenesis.

View Article and Find Full Text PDF

Bicaudal C and trailer hitch are both required for dorsoventral patterning of the Drosophila oocyte. Each mutant produces ventralized eggs, a phenotype typically associated with failure of the oocyte to provide a dorsalization signal--the Gurken protein--to the follicle cells. Bicaudal C and trailer hitch are both implicated in post-transcriptional gene regulation.

View Article and Find Full Text PDF

Selective deployment of Oskar protein at the posterior pole of the Drosophila oocyte relies on localization of oskar mRNA, combined with translational regulation to ensure that only the localized mRNA produces protein. The Bruno protein binds to Bruno Response Elements (BREs) in the oskar mRNA, and prevents translation of unlocalized oskar mRNA. Bruno contains three copies of the RNA Recognition Motif (RRM), a protein motif that often binds directly to RNA.

View Article and Find Full Text PDF

In Drosophila, posterior embryonic body patterning and germ cell formation rely on Oskar, a protein that is concentrated at the posterior pole of the oocyte. A program of mRNA localization and translational regulation ensures that Oskar is only expressed at the proper location. One key regulatory factor is Bruno, which represses translation of oskar mRNA before its localization.

View Article and Find Full Text PDF

The process of mRNA localization, often used for regulation of gene expression in polarized cells, requires recognition of cis-acting signals by components of the localization machinery. Many known RNA signals are active in the contexts of both the Drosophila ovary and the blastoderm embryo, suggesting a conserved recognition mechanism. We used variants of the bicoid mRNA localization signal to explore recognition requirements in the embryo.

View Article and Find Full Text PDF

The heterogeneous nuclear ribonucleoprotein (hnRNP) A2 is a multi-tasking protein that acts in the cytoplasm and nucleus. We have explored the possibility that this protein is associated with telomeres and participates in their maintenance. Rat brain hnRNP A2 was shown to have two nucleic acid binding sites.

View Article and Find Full Text PDF

Nuage, a germ line specific organelle, is remarkably conserved between species, suggesting that it has an important germline cell function. Very little is known about the specific role of this organelle, but in Drosophila three nuage components have been identified, the Vasa, Tudor and Aubergine proteins. Each of these components is also present in polar granules, structures that are assembled in the oocyte and specify the formation of embryonic germ cells.

View Article and Find Full Text PDF

Two of the best understood somatic cell mRNA cytoplasmic trafficking elements are those governing localization of beta-actin and myelin basic protein mRNAs. These cis-acting elements bind the trans-acting factors fibroblast ZBP-1 and hnRNP A2, respectively. It is not known whether these elements fulfil other roles in mRNA metabolism.

View Article and Find Full Text PDF

The cis-acting response element, A2RE, which is sufficient for cytoplasmic mRNA trafficking in oligodendrocytes, binds a small group of rat brain proteins. Predominant among these is heterogeneous nuclear ribonucleoprotein (hnRNP) A2, a trans-acting factor for cytoplasmic trafficking of RNAs bearing A2RE-like sequences. We have now identified the other A2RE-binding proteins as hnRNP A1/A1(B), hnRNP B1, and four isoforms of hnRNP A3.

View Article and Find Full Text PDF