Mutational activation of occurs commonly in lung carcinogenesis and, with the recent U.S. Food and Drug Administration approval of covalent inhibitors of KRAS such as sotorasib or adagrasib, KRAS oncoproteins are important pharmacological targets in non-small cell lung cancer (NSCLC).
View Article and Find Full Text PDFMutational activation of occurs commonly in lung carcinogenesis and, with the recent FDA approval of covalent inhibitors of KRAS such as sotorasib or adagrasib, KRAS oncoproteins are important pharmacological targets in non-small cell lung cancer (NSCLC). However, not all KRAS -driven NSCLCs respond to these inhibitors, and the emergence of drug resistance in those patients that do respond can be rapid and pleiotropic. Hence, based on a backbone of covalent inhibition of KRAS , efforts are underway to develop effective combination therapies.
View Article and Find Full Text PDFPharmacological inhibition of KRAS>RAF>MEK1/2>ERK1/2 signaling has provided no clinical benefit to patients with pancreatic ductal adenocarcinoma (PDAC). Interestingly, combined inhibition of MEK1/2 (with trametinib [T]) plus autophagy (with chloroquine [CQ] or hydroxychloroquine [HCQ]) demonstrated striking anti-tumor effects in preclinical models and in a patient (Patient 1). However, not all patients respond to the T/HCQ regimen, and Patient 1 eventually developed resistant disease.
View Article and Find Full Text PDFAlterations in the PI3K/AKT pathway occur in up to 70% of melanomas and are associated with disease progression. The three AKT paralogs are highly conserved but data suggest they have distinct functions. Activating mutations of AKT1 and AKT3 occur in human melanoma but their role in melanoma formation and metastasis remains unclear.
View Article and Find Full Text PDFIsocitrate dehydrogenase 1 (IDH1) is the most commonly mutated gene in grade II-III glioma and secondary glioblastoma (GBM). A causal role for IDH1 in gliomagenesis has been proposed, but functional validation in vivo has not been demonstrated. In this study, we assessed the role of IDH1 in glioma development in the context of clinically relevant cooperating genetic alterations in vitro and in vivo.
View Article and Find Full Text PDFJ Natl Cancer Inst
December 2018
Background: Statistically significant linkage of melanoma to chromosome 9q21 was previously reported in a Danish pedigree resource and independently confirmed in Utah high-risk pedigrees, indicating strong evidence that this region contains a melanoma predisposition gene.
Methods: Whole-exome sequencing of pairs of related melanoma case subjects from two pedigrees with evidence of 9q21 linkage was performed to identify the responsible predisposition gene. Candidate variants were tested for association with melanoma in an independent set of 454 unrelated familial melanoma case subjects and 396 unrelated cancer-free control subjects from Utah, and 1534 melanoma case subjects and 1146 noncancer control subjects from Texas (MD Anderson) via a two-sided Fisher exact test.
Oncogene-induced senescence, e.g., in melanocytic nevi, terminates the expansion of pre-malignant cells via transcriptional silencing of proliferation-related genes due to decoration of their promoters with repressive trimethylated histone H3 lysine 9 (H3K9) marks.
View Article and Find Full Text PDFTargeted therapies have revolutionized cancer care, but the development of resistance remains a challenge in the clinic. To identify rational targets for combination strategies, we used an established melanoma mouse model and selected for resistant tumors following genetic suppression of NRAS expression. Complete tumor regression was observed in all mice, but 40% of tumors recurred.
View Article and Find Full Text PDFThe development of brain metastases in patients with advanced stage melanoma is common, but the molecular mechanisms responsible for their development are poorly understood. Melanoma brain metastases cause significant morbidity and mortality and confer a poor prognosis; traditional therapies including whole brain radiation, stereotactic radiotherapy, or chemotherapy yield only modest increases in overall survival (OS) for these patients. While recently approved therapies have significantly improved OS in melanoma patients, only a small number of studies have investigated their efficacy in patients with brain metastases.
View Article and Find Full Text PDFCell-cell adhesion protein αE-catenin inhibits skin squamous cell carcinoma (SCC) development; however, the mechanisms responsible for this function are not completely understood. We report here that αE-catenin inhibits β4 integrin-mediated activation of SRC tyrosine kinase.SRCis the first discovered oncogene, but the protein substrate critical for SRC-mediated transformation has not been identified.
View Article and Find Full Text PDFThe significance of ERG in human prostate cancer is unclear because mouse prostate is resistant to ERG-mediated transformation. We determined that ERG activates the transcriptional program regulated by YAP1 of the Hippo signaling pathway and found that prostate-specific activation of either ERG or YAP1 in mice induces similar transcriptional changes and results in age-related prostate tumors. ERG binds to chromatin regions occupied by TEAD/YAP1 and transactivates Hippo target genes.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
March 2012
Expression of the epithelial sodium channel (ENaC) at the apical membrane of cortical collecting duct (CCD) principal cells is modulated by regulated trafficking mediated by vesicle insertion and retrieval. Small GTPases are known to facilitate vesicle trafficking, recycling, and membrane fusion events; however, little is known about the specific Rab family members that modify ENaC surface density. Using a mouse CCD cell line that endogenously expresses ENaC (mpkCCD), the channel was localized to both Rab11a- and Rab11b-positive endosomes by immunoisolation and confocal fluorescent microscopy.
View Article and Find Full Text PDFThe Hippo pathway regulates contact inhibition of cell proliferation and, ultimately, organ size in diverse multicellular organisms. Inactivation of the Hippo pathway promotes nuclear localization of the transcriptional coactivator Yap1, a Hippo pathway effector, and can cause cancer. Here, we show that deletion of αE (α epithelial) catenin in the hair follicle stem cell compartment resulted in the development of skin squamous cell carcinoma in mice.
View Article and Find Full Text PDFThe cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP/PKA-activated anion channel, undergoes efficient apical recycling in polarized epithelia. The regulatory mechanisms underlying CFTR recycling are understood poorly, yet this process is required for proper channel copy number at the apical membrane, and it is defective in the common CFTR mutant, DeltaF508. Herein, we investigated the function of Rab11 isoforms in regulating CFTR trafficking in T84 cells, a colonic epithelial line that expresses CFTR endogenously.
View Article and Find Full Text PDFThe octameric exocyst complex is associated with the junctional complex and recycling endosomes and is proposed to selectively tether cargo vesicles directed toward the basolateral surface of polarized Madin-Darby canine kidney (MDCK) cells. We observed that the exocyst subunits Sec6, Sec8, and Exo70 were localized to early endosomes, transferrin-positive common recycling endosomes, and Rab11a-positive apical recycling endosomes of polarized MDCK cells. Consistent with its localization to multiple populations of endosomes, addition of function-blocking Sec8 antibodies to streptolysin-O-permeabilized cells revealed exocyst requirements for several endocytic pathways including basolateral recycling, apical recycling, and basolateral-to-apical transcytosis.
View Article and Find Full Text PDFThe cystic fibrosis transmembrane conductance regulator (CFTR) is a Cl-selective anion channel expressed in epithelial tissues. Mutations in CFTR lead to the genetic disease cystic fibrosis (CF). Within each epithelial cell, CFTR interacts with a large number of transient macromolecular complexes, many of which are involved in the trafficking and targeting of CFTR.
View Article and Find Full Text PDFCystic fibrosis is a common lethal genetic disease among Caucasians. The cystic fibrosis gene encodes a cyclic adenosine monophosphate-activated chloride channel (cystic fibrosis transmembrane conductance regulator (CFTR)) that mediates electrolyte transport across the luminal surfaces of a variety of epithelial cells. Mutations in CFTR fall into two broad categories; those that affect protein biosynthesis/stability and traffic to the cell surface and those that cause altered channel kinetics in proteins that reach the cell surface.
View Article and Find Full Text PDF