In contrast with conventional drugs, biopharmaceuticals are highly complex molecules with remarkable heterogeneity. Protein glycosylation is an inherent source of this heterogeneity and also affects the safety, efficacy, and serum half-life of therapeutic glycoproteins. Therefore analysis of the glycan pattern is an important issue for characterization and quality control in the biopharmaceutical industry.
View Article and Find Full Text PDFPegylation is the most widely used and accepted methodology for half-life extension of biopharmaceutical drugs that also improves physicochemical and biological characteristics of proteins considerably. Most of the positive pharmacological effects of pegylated proteins are believed to be related to an increased hydrodynamic volume and molecular size. To explore the size impact of polyethylene glycol (PEG) on in vitro potency, a series of well-defined conjugates of interferon alpha-2b (IFN) were prepared with PEGs of different lengths and shapes specifically attached to the N-terminal amino group of the protein.
View Article and Find Full Text PDFCritical illness is characterized by a hypermetabolic state associated with increased mortality, which is partly ascribed to the occurrence of hyperglycemia caused by enhanced endogenous glucose production and insulin resistance (IR). Insulin resistance is well described in patients after surgery and trauma. However, it is less clearly quantified in critically ill medical patients.
View Article and Find Full Text PDFObjective: Hyperglycemia and protein catabolism frequently occur in critically ill patients and both are associated with increased complication rates. These metabolic alterations can be improved by insulin administered exogenously. Since a wide range of insulin dosages have been used, this randomized, placebo-controlled, investigator-blinded, clinical study tests the hypothesis that a low-dose insulin regimen improves hyperglycemia and protein catabolism in critically ill medical patients.
View Article and Find Full Text PDFThe last period of the intrauterine life in the rat (embryonic day 17 to 21, ED17-ED21) is demarcated by an increase in brain and body weight and active neuronogenesis. During this period, a rapid accumulation of DHA (22:6 n-3), unparalleled to other fatty acids, takes place. The details of DHA rapid acquisition in the fetal brain were investigated after imposing a diet deficient in n-3 fatty acids (FA) as of ED1 and subsequently examining the distribution of DHA in major brain phospholipid (PL) classes on ED20, having added on ED15 a triglyceride (TG) mixture enriched up to 43% with DHA.
View Article and Find Full Text PDF