Publications by authors named "Mark S Workentin"

Modifying atomically precise nanocluster surfaces while maintaining the cluster core remains a key challenge. Herein, the synthesis, structure, and properties of two targeted Ag nanoclusters (NCs) with eight surface azide moieties, [CO@Ag(SBu)(m-N-CHCOO)(DMF)] (1-m) and [CO@Ag(SBu)(p-N-CHCOO)(DMF)] (1-p) are reported, where DMF is N,N-dimethylformamide. These AgNCs are designed to undergo cluster surface strain-promoted azide-alkyne cycloaddition (CS-SPAAC) reactions, introducing new functionality to the cluster surface.

View Article and Find Full Text PDF

A gold nanoparticle platform is described in which post-synthesis surface modifications can be conducted using kinetically-tunable strain-promoted cycloaddition chemistry, which is dependent on the electronic properties of the complementary dipolar species. This permits chemoselective reactivity with one reactive dipole over another less reactive dipole, providing exciting opportinities for kinetically-directed self-sorting strategies.

View Article and Find Full Text PDF

To fine-tune structure-property correlations of thiolate-protected gold nanoclusters through post-assembly surface modifications, we report the synthesis of the o, m, and p regioisomeric forms of the anionic azide-functionalized [Au (SCH CH -C H -N ) ] platform. They can undergo cluster-surface strain-promoted alkyne-azide cycloaddition (CS-SPAAC) chemistry with complementary strained-alkynes. Although their optical properties are similar, the electrochemical properties appear to correlate with the position of the azido group.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) are important porous materials. Post-synthetic modification (PSM) of MOFs via the pendant groups or secondary functional groups of organic linkers has been widely used to introduce new or enhance existing properties of MOFs for various practical applications. In this work, we have constructed, for the first time, a novel platform for PSM of MOFs by introducing an anhydride functional group into a hierarchically porous MOF (MIL-121) as an effective anchor.

View Article and Find Full Text PDF
Article Synopsis
  • This study introduces a one-step method for modifying surface headgroups of self-assembled monolayers (SAMs) on gold using a photo-activated chemical reaction called click chemistry.
  • A specific precursor is attached to a gold surface, and when exposed to UVA light, it triggers a reaction that allows for further functionalization with various azides.
  • The technique is validated through spectroscopy and used in a practical application to enhance cell adhesion, demonstrating its potential in both materials science and biochemistry without needing catalysts.
View Article and Find Full Text PDF

A novel bioorthogonal gold nanoparticle (AuNP) template displaying interfacial nitrone functional groups for bioorthogonal interfacial strain-promoted alkyne-nitrone cycloaddition reactions has been synthesized. These nitrone-AuNPs were characterized in detail using H nuclear magnetic resonance spectroscopy, transmission electron microscopy, thermogravimetric analysis, and X-ray photoelectron spectroscopy, and a nanoparticle raw formula was calculated. The ability to control the conjugation of molecules of interest at the molecular level onto the nitrone-AuNP template allowed us to create a novel methodology for the synthesis of AuNP-based radiolabeled probes.

View Article and Find Full Text PDF

Ultrasmall atomically precise monolayer-protected gold thiolate nanoclusters are an intensely researched nanomaterial framework, but there is a lack of a system that can be directly synthesized and undergo interfacial surface chemistry. We report an [Au(SCHCH--CH-N)] nanocluster platform with azide moieties appended onto each surface ligand. The structure of this surface reactive cluster has been confirmed by single-crystal X-ray crystallography, mass spectrometry and ultraviolet visible, infrared and nuclear magnetic resonance spectroscopies.

View Article and Find Full Text PDF

Highly accelerated inverse-electron-demand strain-promoted alkyne-nitrone cycloaddition (IED SPANC) between a stable cyclooctyne (bicyclo[6.1.0]nonyne (BCN)) and nitrones delocalized into a -pyridinium functionality is reported, with the most electron-deficient "pyridinium-nitrone" displaying among the most rapid cycloadditions to BCN that is currently reported.

View Article and Find Full Text PDF

The development of reactive moieties that enable molecular control of bond-forming and bond-breaking reactions within complex media is highly important in materials and biomaterials research as it provides opportunities to carefully manipulate small molecules and material surfaces in a reliable manner. Despite recent advances in the realization of new ligation strategies and "click-and-release" systems, there has been little development of multifunctional moieties that feature a broad range of chemical capabilities. To address this challenge, we designed a molecular tool that can utilize four well-defined bioorthogonal chemistries interchangeably for the attachment, replacement, and release of molecules within a system: the Staudinger-Bertozzi ligation (SBL), perfluoroaryl azide Staudinger reaction (PFAA-SR), strain-promoted alkyne-azide cycloaddition (SPAAC), and strain-promoted alkyne-nitrone cycloaddition (SPANC).

View Article and Find Full Text PDF

Dialkynylborane complexes of N-donor ligands have received significant attention because of their application in biological imaging, as light-harvesting materials, and as the functional component of organic photovoltaics. Despite these advances, relatively few types of N-donor ligands have been explored in this context. To this end, we prepared a series of dialkynylborane complexes of formazanate ligands and explored their electronic properties and reactivity.

View Article and Find Full Text PDF

Loading metal guests within metal-organic frameworks (MOFs) via secondary functional groups is a promising route for introducing or enhancing MOF performance in various applications. In this work, 14 metal ions (Li, Na, K, Mg, Ca, Ba, Zn, Co, Mn, Ag, Cd, La, In, and Pb) have been successfully introduced within the MIL-121 MOF using a cost-efficient route involving free carboxylic groups on the linker. The local and long-range structure of the metal-loaded MOFs is characterized using multinuclear solid-state NMR and X-ray diffraction methods.

View Article and Find Full Text PDF

The reaction of N-heterocyclic carbene (NHC) Group 11 metal complexes, [(NHC)M-X] (X = chloride, acetate), with the new azide-modified arylthiol 1-HSCH-2,5-Me-4-NCH-CH, 1 (for M = Au; X = Cl), or 1-MeSiSCH-2,5-Me-4-NCH-CH, 2 (for M = Cu, X = Cl; M = Ag, X = OAc), affords the "clickable" NHC-metal thiolates [( Pr-bimy)Au-(1-SCH-2,5-Me-4-NCH-CH)], 5; [(IPr)Au-(1-SCH-2,5-Me-4-NCH-CH)], 6; [(IPr)Ag-(1-SCH-2,5-Me-4-NCH-CH)], 7; and [(IPr)Cu-(1-SCH-2,5-Me-4-NCH-CH)], 8 ( Pr-bimy = 1,3-di-isopropylbenzimidazol-2-ylidene, IPr = 1,3-bis(2,6-di-iso-propylphenyl)imidazol-2-ylidene). Single-crystal X-ray analysis of all metal complexes show that they are two-coordinate, nearly linear, with a terminally bonded thiolate ligand possessing an accessible azide (-N) moiety. The strain-promoted alkyne-azide cycloaddition (SPAAC) reaction of complex 6 with bicyclo[6.

View Article and Find Full Text PDF

The ability to regulate small-molecule release from metallic nanoparticle substrates offers unprecedented opportunities for nanocarrier-based imaging, sensing, and drug-delivery applications. Herein we report a novel and highly specific release methodology off gold nanoparticle (AuNP) surfaces based on the bioorthogonal Staudinger-Bertozzi ligation. A thiol ligand bearing the molecular cargo, a Rhodamine B dye derivative, was synthesized and used to modify small water-soluble 5 nm AuNPs.

View Article and Find Full Text PDF

In this study, we report the design, synthesis, and characterization of small 3 nm water soluble gold nanoparticles (AuNPs) that feature cyclopropenone-masked strained alkyne moieties capable of undergoing interfacial strain-promoted cycloaddition (i-SPAAC) with azides after exposure to UV-A light. A strained alkyne precursor was incorporated onto AuNPs by direct ligand exchange of a thiol-modified cyclopropenone-masked dibenzocyclooctyne (photoDIBO) ligand. These photoDIBO-AuNPs were characterized by H NMR, IR, and UV/Vis spectroscopy, as well as transmission electron microscopy (TEM) and thermogravimetric analysis (TGA), and the extent of modification was quantified.

View Article and Find Full Text PDF

The glutathione-mediated retro Michael-type addition reaction is demonstrated to take place at the interface of small water-soluble maleimide-functionalized gold nanoparticles (Maleimide-AuNP). The retro Michael-type addition reaction can be blocked by hydrolyzing the Michael addition thioether adduct at the nanoparticle's interface under reaction conditions that do not cause AuNP decomposition. This procedure "locks" the molecule of interest onto the Maleimide-AuNP template for potential uses in medical imaging and bioconjugation, ensuring no loss of the molecular cargo from the nanocarrier.

View Article and Find Full Text PDF

A nanoaggregate-on-mirror (NAOM) structure has been developed for molecular and biomolecular detection using surface-enhanced Raman spectroscopy (SERS). The smooth surface of the gold mirror allows for simple and homogeneous functionalization, while the introduction of the nanoaggregates enhances the Raman signal of the molecule(s) in the vicinity of the aggregate-mirror junction. This is evidenced by functionalizing the gold mirror with 4-nitrothiophenol, and the further addition of gold nanoaggregates promotes local SERS activity only in the areas with the nanoaggregates.

View Article and Find Full Text PDF

Prepared by simple pour and mix chemistry, gold nanosponges (AuNS) are versatile structures for surface-enhanced Raman spectroscopy (SERS). An investigation into the enhancement is performed by relating the nanostructure's morphology to the SERS signal. The potential of the AuNS in SERS-based molecular and biomolecular detection is introduced.

View Article and Find Full Text PDF

Small gold nanoparticles (AuNPs) that possess interfacial methyl-2-(diphenylphosphino)benzoate moieties have been successfully synthesized (Staudinger-AuNPs) and characterized by multi-nuclear MR spectroscopy, transmission electron microscopy (TEM), UV-Vis spectroscopy, thermogravimetric analysis, and X-ray photoelectron spectroscopy (XPS). In particular, XPS was remarkably sensitive for characterization of the novel nanomaterial, and in furnishing proof of its interfacial reactivity. These Staudinger-AuNPs were found to be stable to the oxidation of the phosphine center.

View Article and Find Full Text PDF

A protection-deprotection strategy for strained alkynes used for bioorthogonal chemistry is reported. A strained alkyne can be protected with dicobalt-octacarbonyl and we demonstrate for the first time that a strained alkyne can be re-formed and isolated under mild reaction conditions for further bioorthogonal reactivity. The protection-deprotection strategy herein reported will expand the versatility of strained alkynes for the preparation of substrates in chemical biology and materials applications.

View Article and Find Full Text PDF

Au clusters with protecting organothiolate ligands and core diameters less than 2 nm are molecule-like structures, suitable for catalysis, optoelectronics and biology applications. The spectroscopy and electrochemistry of Au25(0) (Au25[(SCH2CH2Ph)18], SCH2CH2Ph = 2-phenylethanethiol) allowed us to construct a Latimer-type diagram for the first time, which revealed a rich photoelectrochemistry of the cluster and the unique relationship to its various oxidation states and corresponding excited states. The occurrence of cluster electrochemiluminescence (ECL) was examined in the presence of tri-n-propylamine (TPrA) as a co-reactant and was discovered to be in the near-infrared (NIR) region with peak wavelengths of 860, 865, and 960 nm, emitted by Au25(+*), Au25(0*), and Au25(-*), respectively.

View Article and Find Full Text PDF

The heterogeneous electron transfer reduction of the bicyclic endoperoxide 1,4-diphenyl-2,3-dioxabicyclo[2.2.1]hept-5-ene (4) was investigated in N,N-dimethylformamide at a glassy carbon electrode.

View Article and Find Full Text PDF

An investigation of mechanisms for the near-infrared (NIR) electrogenerated chemiluminescence/electrochemiluminescence (ECL) of Au38(SC2H4Ph)24 (Au38, SC2H4Ph = 2-phenylethanethiol) nanoclusters both in annihilation and coreactant paths is reported. Essentially, no ECL emission was produced in the annihilation route over the potential range of the accessible redox states of Au38, because of the short lifetime and/or low reactivity of the electrogenerated Au38 intermediates necessary for ECL. Highly efficient light emission with a nominal peak wavelength of 930 nm in the NIR region was observed in the anodic region upon addition of tri-n-propylamine (TPrA) as the coreactant.

View Article and Find Full Text PDF

We report for the first time the fabrication of nanocomposite hole-blocking layers consisting of poly-3,4-ethylene-dioxythiophene:poly-styrene-sulfonate (PEDOT:PSS) thin films incorporating networks of gold nanoparticles assembled from Au144(SCH2CH2Ph)60, a molecular gold precursor. These thin films can be prepared reproducibly on indium tin oxide by spinning on it Au144(SCH2CH2Ph)60 solutions in chlorobenzene, annealing the resulting thin film at 400 °C, and subsequently spinning PEDOT:PSS on top. The use of our nanocomposite hole-blocking layers for enhancing the photoconversion efficiency of bulk heterojunction organic solar cells is demonstrated.

View Article and Find Full Text PDF

A series of polychalcogenotrimethylsilane complexes Ar(CH2ESiMe3)n, (Ar = aryl; E = S, Se; n = 2, 3, and 4) can be prepared from the corresponding polyorganobromide and M[ESiMe3] (M = Na, Li). These represent the first examples of the incorporation of such a large number of reactive -ESiMe3 moieties onto an organic molecular framework. They are shown to be convenient reagents for the preparation of the polyferrocenylseleno- and thioesters from ferrocenoyl chloride.

View Article and Find Full Text PDF

Versatile water- and organic solvent-soluble AuNPs that incorporate an interfacial strained alkyne capable of efficient pour and mix strain promoted interfacial cycloadditions with azide partners have been synthesized and carefully characterized for the first time. The use of XPS to quantitate the loading of the strained alkyne on the AuNPs is noteworthy. The reactivity towards the interfacial strain promoted azide-alkyne cycloaddition reaction was demonstrated by using azide-decorated polymersomes as bioorthogonal reaction partners.

View Article and Find Full Text PDF