Publications by authors named "Mark S Sherwin"

We investigate the THz intersubband absorption behavior of a single 40-nm wide GaAs/AlGaAs square quantum well (QW) using Johnson noise thermometry. In our measurements, the Johnson noise associated with intersubband absorption is measured from the in-plane conduction channel of the QW while its intersubband absorption behavior is being tuned through the independent control of the charge density and the perpendicular DC electric field. Our measurements enable the study of intersubband absorption of a small (∼20,000 and potentially fewer) number of electrons in a single mesoscopic device, as well as direct measurement of the electron heating from intersubband absorption.

View Article and Find Full Text PDF

We present field-domain rapid-scan (RS) electron paramagnetic resonance (EPR) at 8.6T and 240GHz. To enable this technique, we upgraded a home-built EPR spectrometer with an FPGA-enabled digitizer and real-time processing software.

View Article and Find Full Text PDF

Favorable relaxation processes, high-field spectral properties, and biological compatibility have made spin-7/2 Gd-based spin labels an increasingly popular choice for protein structure studies using high-field electron paramagnetic resonance. However, high-field relaxation and decoherence in ensembles of half-integer high-spin systems, such as Gd, remain poorly understood. We report spin-lattice () and phase memory () relaxation times at 8.

View Article and Find Full Text PDF

Here, we present a rapidly prototyped, cost-efficient, and 3D printed quasi-optical sample holder for improving the signal-to-noise ratio (SNR) in modern, resonator-free, and high-field electron paramagnetic resonance (HFEPR) spectrometers. Such spectrometers typically operate in induction mode: The detected EPR ("cross-polar") signal is polarized orthogonal to the incident ("co-polar") radiation. The sample holder makes use of an adjustable sample positioner that allows for optimizing the sample position to maximize the 240-gigahertz magnetic field and a rooftop mirror that allows for small rotations of the microwave polarization to maximize the cross-polar signal and minimize the co-polar background.

View Article and Find Full Text PDF

Electron paramagnetic resonance spectroscopy (EPR) is mostly used in structural biology in conjunction with pulsed dipolar spectroscopy (PDS) methods to monitor interspin distances in biomacromolecules at cryogenic temperatures both in vitro and in cells. In this context, spectroscopically orthogonal spin labels were shown to increase the information content that can be gained per sample. Here, we exploit the characteristic properties of gadolinium and nitroxide spin labels at physiological temperatures to study side chain dynamics via continuous wave (cw) EPR at X band, surface water dynamics via Overhauser dynamic nuclear polarization at X band and short-range distances via cw EPR at high fields.

View Article and Find Full Text PDF

Electron Paramagnetic Resonance (EPR) is a powerful technique to study materials and biological samples on an atomic scale. High-field EPR in particular enables extracting very small g-anisotropies in organic radicals and half-filled 3d and 4f metal ions such as Mn (3d) or Gd (4f), and resolving EPR signals from unpaired spins with very close g-values, both of which provide high-resolution details of the local atomic environment. Before the recent commissioning of the high-homogeneity Series Connected Hybrid magnet (SCH, superconducting + resistive) at the National High Magnetic Field Laboratory (NHMFL), the highest-field, high-resolution EPR spectrometer available was limited to 25 T using a purely resistive "Keck" magnet at the NHMFL.

View Article and Find Full Text PDF

We present time-resolved Gd-Gd electron paramagnetic resonance (TiGGER) at 240 GHz for tracking inter-residue distances during a protein's mechanical cycle in the solution state. TiGGER makes use of Gd-sTPATCN spin labels, whose favorable qualities include a spin-7/2 EPR-active center, short linker, narrow intrinsic linewidth, and virtually no anisotropy at high fields (8.6 T) when compared to nitroxide spin labels.

View Article and Find Full Text PDF

Synthetic chemistry enables a bottom-up approach to quantum information science, where atoms can be deterministically positioned in a quantum bit or qubit. Two key requirements to realize quantum technologies are qubit initialization and read-out. By imbuing molecular spins with optical initialization and readout mechanisms, analogous to solid-state defects, molecules could be integrated into existing quantum infrastructure.

View Article and Find Full Text PDF

Free electron laser-powered pulsed electron paramagnetic resonance experiments performed at 240  GHz/8.56  T on the crystalline organic radical 1,3-bisdiphenylene-2-phenylallyl reveal a tip-angle dependent resonant frequency. Frequency shifts as large as 11 MHz (45 ppm) are observed during a single Rabi oscillation.

View Article and Find Full Text PDF

Spin dynamics in antiferromagnets has much shorter timescales than in ferromagnets, offering attractive properties for potential applications in ultrafast devices. However, spin-current generation via antiferromagnetic resonance and simultaneous electrical detection by the inverse spin Hall effect in heavy metals have not yet been explicitly demonstrated. Here we report sub-terahertz spin pumping in heterostructures of a uniaxial antiferromagnetic CrO crystal and a heavy metal (Pt or Ta in its β phase).

View Article and Find Full Text PDF

We report on the generation of frequency combs from the recently-discovered phenomenon of high-order sideband generation (HSG). A near-band gap continuous-wave (cw) laser with frequency f was transmitted through an epitaxial layer containing GaAs/AlGaAs quantum wells that were driven by quasi-cw in-plane electric fields F between 4 and 50 kV/cm oscillating at frequencies f between 240 and 640 GHz. Frequency combs with teeth at f = f + nf (n even) were produced, with maximum reported n > 120, corresponding to a maximum comb span > 80 THz.

View Article and Find Full Text PDF

Electron paramagnetic resonance (EPR) is a powerful tool for research in chemistry, biology, physics and materials science, which can benefit significantly from moving to frequencies above 100 GHz. In pulsed EPR spectrometers driven by powerful sub-THz oscillators, such as the free electron laser (FEL)-powered EPR spectrometer at UCSB, control of the duration, power and relative phases of the pulses in a sequence must be performed at the frequency and power level of the oscillator. Here we report on the implementation of an all-quasioptical four-step phase cycling procedure carried out directly at the kW power level of the 240 GHz pulses used in the FEL-powered EPR spectrometer.

View Article and Find Full Text PDF

The magnetic properties of paramagnetic species with spin S > 1/2 are parameterized by the familiar g tensor as well as "zero-field splitting" (ZFS) terms that break the degeneracy between spin states even in the absence of a magnetic field. In this work, we determine the mean values and distributions of the ZFS parameters D and E for six Gd(iii) complexes (S = 7/2) and critically discuss the accuracy of such determination. EPR spectra of the Gd(iii) complexes were recorded in glassy frozen solutions at 10 K or below at Q-band (∼34 GHz), W-band (∼94 GHz) and G-band (240 GHz) frequencies, and simulated with two widely used models for the form of the distributions of the ZFS parameters D and E.

View Article and Find Full Text PDF

Electron paramagnetic resonance spectroscopy in combination with site-directed spin labeling is a very powerful tool for elucidating the structure and organization of biomolecules. Gd complexes have recently emerged as a new class of spin labels for distance determination by pulsed EPR spectroscopy at Q- and W-band. We present CW EPR measurements at 240 GHz (8.

View Article and Find Full Text PDF

Because it is sensitive to fluctuations occurring over femtoseconds to picoseconds, gigahertz-to-terahertz dielectric relaxation spectroscopy can provide a valuable window into water's most rapid intermolecular motions. In response, we have built a vector network analyzer dielectric spectrometer capable of measuring absorbance and index of refraction in this frequency regime with unprecedented precision. Using this to determine the complex dielectric response of water and aqueous salt solutions from 5.

View Article and Find Full Text PDF

The structural organization of the functionally relevant, hexameric oligomer of green-absorbing proteorhodopsin (G-PR) was obtained from double electron-electron resonance (DEER) spectroscopy utilizing conventional nitroxide spin labels and recently developed Gd3+ -based spin labels. G-PR with nitroxide or Gd3+ labels was prepared using cysteine mutations at residues Trp58 and Thr177. By combining reliable measurements of multiple interprotein distances in the G-PR hexamer with computer modeling, we obtained a structural model that agrees with the recent crystal structure of the homologous blue-absorbing PR (B-PR) hexamer.

View Article and Find Full Text PDF

In a semiconductor illuminated by a strong terahertz (THz) field, optically excited electron-hole pairs can recombine to emit light in a broad frequency comb evenly spaced by twice the THz frequency. Such high-order THz sideband generation is of interest both as an example of extreme nonlinear optics and also as a method for ultrafast electro-optical modulation. So far, this phenomenon has only been observed with large field strengths (~10 kV cm(-1)), an obstacle for technological applications.

View Article and Find Full Text PDF

Electron-hole recollisions are induced by resonantly injecting excitons with a near-IR laser at frequency fNIR into quantum wells driven by a 10  kV/cm field oscillating at fTHz=0.57  THz. At T=12  K, up to 18 sidebands are observed at frequencies fsideband=fNIR+2nfTHz, with -8≤2n≤28.

View Article and Find Full Text PDF

Plasmonic effects have proven to be very efficient in coupling light to structures much smaller than its wavelength. Efficient coupling is particularly important for the infrared or terahertz (λ ∼ 0.3 mm) region where semiconductor structures and devices may be orders of magnitude smaller than the wavelength and this can be achieved through nanostructures that have a desired plasmonic response.

View Article and Find Full Text PDF

Interspin distances between 0.8 nm and 2.0 nm can be measured through the dipolar broadening of the continuous wave (cw) EPR spectrum of nitroxide spin labels at X-band (9.

View Article and Find Full Text PDF

Electron paramagnetic resonance (EPR) powered by a free electron laser (FEL) has been shown to dramatically expand the capabilities of EPR at frequencies above ~100 GHz, where other high-power sources are unavailable. High-power pulses are necessary to achieve fast (<10 ns) spin rotations in order to alleviate the limited excitation bandwidth and time resolution that typically hamper pulsed EPR at these high frequencies. While at these frequencies, an FEL is the only source that provides ~1 kW of power and can be tuned continuously up to frequencies above 1 THz, it has only recently been implemented for one- and two-pulse EPR, and the capabilities of the FEL as an EPR source are still being expanded.

View Article and Find Full Text PDF

At 8.5 T, the polarization of an ensemble of electron spins is essentially 100% at 2 K, and decreases to 30% at 20 K. The strong temperature dependence of the electron spin polarization between 2 and 20 K leads to the phenomenon of spin bath quenching: temporal fluctuations of the dipolar magnetic fields associated with the energy-conserving spin "flip-flop" process are quenched as the temperature of the spin bath is lowered to the point of nearly complete spin polarization.

View Article and Find Full Text PDF

"Quantum posts" are roughly cylindrical semiconductor nanostructures that are embedded in an energetically shallower "matrix" quantum well of comparable thickness. We report measurements of voltage-controlled charging and terahertz absorption of 30 nm thick InGaAs quantum wells and posts. Under flat-band (zero-electric field) conditions, the quantum posts each contain approximately six electrons, and an additional ~2.

View Article and Find Full Text PDF

We have developed a rapid scanning terahertz (THz) spectrometer based on a synchronized two-fiber-laser system. When the system is set to the asynchronous optical sampling mode, THz spectra extending to 3 THz can be acquired within 1 μs at a signal-to-noise ratio of the electric field of better than 20. Signal averaging results in a dynamic range of more than 60 dB, and frequency components of more than 4 THz can be detected.

View Article and Find Full Text PDF

We report coherent manipulation of S=10 Fe8 single-molecule magnets. The temperature dependence of the spin decoherence time T2 measured by high-frequency pulsed electron paramagnetic resonance indicates that strong spin decoherence is dominated by Fe8 spin bath fluctuations. By polarizing the spin bath in Fe8 single-molecule magnets at magnetic field B=4.

View Article and Find Full Text PDF