Publications by authors named "Mark S Little"

The temperature dependent aggregation behavior of PffBT4T polymers used in organic solar cells plays a critical role in the formation of a favorable morphology in fullerene-based devices. However, there has been little investigation into the impact of donor/acceptor ratio on morphology tuning, especially for non-fullerene acceptors (NFAs). Herein, the influence of composition on morphology is reported for blends of PffBT4T-2DT with two NFAs, O-IDTBR and O-IDFBR.

View Article and Find Full Text PDF

This study presents preliminary experimental data suggesting that sodium 4-(pyrene-1-yl)butane-1-sulfonate (PBSA), , an analogue of sodium pyrene-1-sulfonate (PSA), , enhances the stability of aqueous reduced graphene oxide (RGO) graphene dispersions. We find that RGO and exfoliated graphene dispersions prepared in the presence of are approximately double the concentration of those made with commercially available PSA, . Quantum mechanical and molecular dynamics simulations provide key insights into the behavior of these molecules on the graphene surface.

View Article and Find Full Text PDF

Fullerenes have formed an integral part of high performance organic solar cells over the last 20 years, however their inherent limitations in terms of synthetic flexibility, cost and stability have acted as a motivation to develop replacements; the so-called non-fullerene electron acceptors. A rapid evolution of such materials has taken place over the last few years, yielding a number of promising candidates that can exceed the device performance of fullerenes and provide opportunities to improve upon the stability and processability of organic solar cells. In this review we explore the structure-property relationships of a library of non-fullerene acceptors, highlighting the important chemical modifications that have led to progress in the field and provide an outlook for future innovations in electron acceptors for use in organic photovoltaics.

View Article and Find Full Text PDF

A generic approach to the regiospecific synthesis of halogenated polycyclic aromatics is made possible by the one- or two-directional benzannulation reactions of readily available (ortho-allylaryl)trichloroacetates (the "BHQ" reaction). Palladium-catalysed cross-coupling reactions of the so-formed haloaromatics enable the synthesis of functionalised polycyclic aromatic hydrocarbons (PAHs) with surgical precision. Overall, this new methodology enables the facile mining of chemical space in search of new electronic functional materials.

View Article and Find Full Text PDF