Publications by authors named "Mark S Hixon"

Article Synopsis
  • Regulation of dopamine activity is crucial for treating conditions like schizophrenia, with LB-102 being a new dopamine D/5-HT inhibitor aimed at this purpose.
  • The study measured how effectively LB-102 occupied dopamine receptors in healthy volunteers using PET scans at various doses, finding that 50 mg consistently provided the desired occupancy over 24 hours.
  • Results indicated that while steady dosing led to consistent receptor occupancy, the relationship between receptor occupancy and plasma concentrations was different than usual, and LB-102 was safe and well-tolerated across all tested doses.
View Article and Find Full Text PDF

The covalent reversible modification of proteins is a validated strategy for the development of probes and candidate therapeutics. However, the covalent reversible targeting of noncatalytic lysines is particularly challenging. Herein, we characterize the 2-hydroxy-1-naphthaldehyde (HNA) fragment as a targeted covalent reversible ligand of a noncatalytic lysine (Lys) of the Krev interaction trapped 1 (KRIT1) protein.

View Article and Find Full Text PDF

LB-102 is an N-methylated analogue of amisulpride under development to treat schizophrenia. LB-102 was evaluated in a Phase 1, double-blind, placebo-controlled, clinical study to evaluate safety and pharmacokinetics. This was a first-in-human study examining single and multiple doses of LB-102 administered orally in 64 healthy volunteers.

View Article and Find Full Text PDF

Botulinum neurotoxin A (BoNT/A) is a lethal toxin, which causes botulism, and is categorized as a bioterrorism threat, which causes flaccid paralysis and death. Botulinum A neurotoxicity is governed through its light chain (LC), a zinc metalloprotease. Pharmacological investigations aimed at negating BoNT/A's LC have typically looked to inhibitors that have been shown to inhibit the light chain's activity by reversible zinc chelation within its active site.

View Article and Find Full Text PDF

Purpose: Dysregulations of key signaling pathways in metabolic syndrome are multifactorial, eventually leading to cardiovascular events. Hyperglycemia in conjunction with dyslipidemia induces insulin resistance and provokes release of proinflammatory cytokines resulting in chronic inflammation, accelerated lipid peroxidation with further development of atherosclerotic alterations and diabetes. We have proposed a novel combinatorial approach using FDA approved compounds targeting IL-17a and DPP4 to ameliorate a significant portion of the clustered clinical risks in patients with metabolic syndrome.

View Article and Find Full Text PDF

We report the discovery of a fluorescent small molecule probe. This probe exhibits an emission increase in the presence of the oncoprotein MYC that can be attenuated by a competing inhibitor. Hydrogen-deuterium exchange mass spectrometry analysis, rationalized by induced-fit docking, suggests it binds to the "coiled-coil" region of the leucine zipper domain.

View Article and Find Full Text PDF

infection (CDI) causes serious and sometimes fatal symptoms like diarrhea and pseudomembranous colitis. Although antibiotics for CDI exist, they are either expensive or cause recurrence of the infection due to their altering the colonic microbiota, which is necessary to suppress the infection. Here, we leverage a class of known membrane-targeting compounds that we previously showed to have broad inhibitory activity across multiple strains while preserving the microbiome to develop an efficacious agent.

View Article and Find Full Text PDF

Benzamide antipsychotics such as amisulpride are dosed as racemates though efficacy is assumed to be mediated through enantiomer binding to D receptors. At prescribed doses, the benzamides likely display polypharmacy since brain exposure should be sufficient to engage the 5-HT receptors, as well. Curiously, the studies herein reveal that racemic dosing is required to engage both targets since the D receptor has an almost 40-fold selectivity for the enantiomer, while the 5-HT receptor has greater than 50-fold preference for the enantiomer.

View Article and Find Full Text PDF

Opioid abuse in the United States has been declared a national crisis and is exacerbated by an inexpensive, readily available, and illicit supply of synthetic opioids. Specifically, fentanyl and related analogues such as carfentanil pose a significant danger to opioid users due to their high potency and rapid acting depression of respiration. In recent years these synthetic opioids have become the number one cause of drug-related deaths.

View Article and Find Full Text PDF

The parasitic disease onchocerciasis is the second leading cause of preventable blindness, afflicting more than 18 million people worldwide. Despite an available treatment, ivermectin, and control efforts by the World Health Organization, onchocerciasis remains a burden in many regions. With an estimated 120 million people living in areas at risk of infection, efforts are now shifting from prevention to surveillance and elimination.

View Article and Find Full Text PDF

MYC is a key transcriptional regulator involved in cellular proliferation and has established roles in transcriptional elongation and initiation, microRNA regulation, apoptosis, and pluripotency. Despite this prevalence, functional chemical probes of MYC function at the protein level have been limited. Previously, we discovered 5a, that binds to MYC with potency and specificity, downregulates the transcriptional activities of MYC and shows efficacy in vivo.

View Article and Find Full Text PDF

Serine hydrolases are susceptible to potent reversible inhibition by boronic acids. Large collections of chemically diverse boronic acid fragments are commercially available because of their utility in coupling chemistry. We repurposed the approximately 650 boronic acid reagents in our collection as a directed fragment library targeting serine hydrolases and related enzymes.

View Article and Find Full Text PDF

A series of potent ALK5 inhibitors were designed using a SBDD approach and subsequently optimized to improve drug likeness. Starting with a 4-substituted quinoline screening hit, SAR was conducted using a ALK5 binding model to understand the binding site and optimize activity. The resulting inhibitors displayed excellent potency but were limited by high in vitro clearance in rat and human microsomes.

View Article and Find Full Text PDF

Receptor tyrosine kinase therapies have proven to be efficacious in specific cancer patient populations; however, a significant limitation of tyrosine kinase inhibitor (TKI) treatment is the emergence of resistance mechanisms leading to a transient, partial, or complete lack of response. Combination therapies using agents with synergistic activity have potential to improve response and reduce acquired resistance. Chemoreagent or TKI treatment can lead to increased expression of hepatocyte growth factor (HGF) and/or MET, and this effect correlates with increased metastasis and poor prognosis.

View Article and Find Full Text PDF

Delta-5 desaturase (D5D) catalyzes the conversion from dihomo-gamma linoleic acid (DGLA) to arachidonic acid (AA). DGLA and AA are common precursors of anti- and pro-inflammatory eicosanoids, respectively, making D5D an attractive drug target for inflammatory-related diseases. Despite several reports on D5D inhibitors, their biochemical mechanisms of action (MOAs) remain poorly understood, primarily due to the difficulty in performing quantitative enzymatic analysis.

View Article and Find Full Text PDF

Using SBDD, a series of 4-amino-7-azaindoles were discovered as a novel class of Alk5 inhibitors that are potent in both Alk5 enzymatic and cellular assays. Subsequently a ring cyclization strategy was utilized to improve ADME properties leading to the discovery of a series of 1H-imidazo[4,5-c]pyridin-2(3H)-one drug like Alk5 inhibitors.

View Article and Find Full Text PDF

The MAPK signaling cascade, comprised of several linear and intersecting pathways, propagates signaling into the nucleus resulting in cytokine and chemokine release. The Map Kinase Kinase isoforms 3 and 6 (MKK3 and MKK6) are responsible for the phosphorylation and activation of p38, and are hypothesized to play a key role in regulating this pathway without the redundancy seen in downstream effectors. Using FBDD, we have discovered efficient and selective inhibitors of MKK3 and MKK6 that can serve as tool molecules to help further understand the role of these kinases in MAPK signaling, and the potential impact of inhibiting kinases upstream of p38.

View Article and Find Full Text PDF

Owing to their covalent target occupancy, irreversible inhibitors require low exposures and offer long duration, and their use thus represents a powerful strategy for achieving pharmacological efficacy. Importantly, the potency metric of irreversible inhibitors is kinact/KI not IC50. A simple approach to measuring kinact/KI was developed that makes use of an irreversible probe for competitive assays run to completion against test compounds.

View Article and Find Full Text PDF

Dyngo-4a™ has been found to be an endocytic inhibitor of BoNT/A neurotoxicity through dynamin inhibition. Herein, we demonstrate this molecule to have a previously unrecognized dual activity against BoNT/A, dynamin-protease inhibition. To establish the importance of this dual activity, detailed kinetic analysis of Dyngo-4a's inhibition of BoNT/A metalloprotease as well as cellular and animal toxicity studies have been described.

View Article and Find Full Text PDF

Identification of inhibitors for protein-protein interactions (PPIs) from high-throughput screening (HTS) is challenging due to the weak affinity of primary hits. We present a hit validation strategy of PPI inhibitors using quantitative ligand displacement assay. From an HTS for Bcl-xL/Mcl-1 inhibitors, we obtained a hit candidate, I1, which potentially forms a reactive Michael acceptor, I2, inhibiting Bcl-xL/Mcl-1 through covalent modification.

View Article and Find Full Text PDF

Botulinum neurotoxin serotype A (BoNT/A) is one of the most lethal toxins known. Its extreme toxicity is due to its light chain (LC), a zinc protease that cleaves SNAP-25, a synaptosome-associated protein, leading to the inhibition of neuronal activity. Studies on BoNT/A LC have revealed that two regions, termed exosites, can play an important role in BoNT catalytic activity.

View Article and Find Full Text PDF

Botulinum neurotoxicity is characterized by peripheral neuromuscular blockade/flaccid paralysis that can lead to respiratory failure and ultimately death. Current therapeutic options provide relief in a pre-exposure scenario, but there are no clinically approved postexposure medical countermeasures. Here, we introduce a platform that utilizes a combination of a toxin sequestering agent and a pharmacological antagonist to ablate botulinum neurotoxicity in a well-defined mouse lethality assay.

View Article and Find Full Text PDF

Although botulinum neurotoxin serotype A (BoNT/A) is known for its use in cosmetics, it causes a potentially fatal illness, botulism, and can be used as a bioterror weapon. Many compounds have been developed that inhibit the BoNTA zinc-metalloprotease light chain (LC), however, none of these inhibitors have advanced to clinical trials. In this study, a fragment-based approach was implemented to develop novel covalent inhibitors of BoNT/A LC.

View Article and Find Full Text PDF

5-Lipoxygenase (5-LOX) reacts with arachidonic acid (AA) to first generate 5(S)-hydroperoxy-6(E),8(Z),11(Z),14(Z)-eicosatetraenoic acid [5(S)-HpETE] and then an epoxide from 5(S)-HpETE to form leukotriene A4, from a single polyunsaturated fatty acid. This work investigates the kinetic mechanism of these two processes and the role of ATP in their activation. Specifically, it was determined that epoxidation of 5(S)-HpETE (dehydration of the hydroperoxide) has a rate of substrate capture (Vmax/Km) significantly lower than that of AA hydroperoxidation (oxidation of AA to form the hydroperoxide); however, hyperbolic kinetic parameters for ATP activation indicate a similar activation for AA and 5(S)-HpETE.

View Article and Find Full Text PDF

Catechol O-methyl transferase belongs to the diverse family of S-adenosyl-l-methionine transferases. It is a target involved in the treatment of Parkinson's disease. Here we present a fragment-based screening approach to discover noncatechol derived COMT inhibitors which bind at the SAM binding pocket.

View Article and Find Full Text PDF