We report the fabrication and characterization of light-emitting transistors incorporating individual cadmium selenide (CdSe) nanocrystals. Electrical measurements conducted at low bias voltage and low temperature show clear evidence of Coulomb blockade behavior, indicating that electrons pass through the nanocrystal by single-electron tunneling. Once the bias voltage exceeds the band gap of CdSe, devices with asymmetric tunnel barriers emit linearly polarized light.
View Article and Find Full Text PDFWe report the synthesis of single-crystalline VO2 nanowires with rectangular cross sections using a vapor transport method. These nanowires have typical diameters of 60 (+/-30) nm and lengths up to >10 mum. Electron microscopy and diffraction measurements show that the VO2 nanowires are single crystalline and exhibit a monoclinic structure.
View Article and Find Full Text PDFRecent progress on the synthesis and characterization of semiconductor nanowire heterostructures is reviewed. We describe a general method for heterostructure synthesis based on chemical vapour deposition and the vapour-liquid-solid growth of crystalline semiconducting nanowires. We then examine examples of nanowire heterostructures for which physical properties have been measured, considering the effects of synthetic conditions on the heterointerfaces as well as the electrical and optical characterization measurements that reveal heterointerface formation and quality.
View Article and Find Full Text PDFSemiconductor heterostructures with modulated composition and/or doping enable passivation of interfaces and the generation of devices with diverse functions. In this regard, the control of interfaces in nanoscale building blocks with high surface area will be increasingly important in the assembly of electronic and photonic devices. Core-shell heterostructures formed by the growth of crystalline overlayers on nanocrystals offer enhanced emission efficiency, important for various applications.
View Article and Find Full Text PDFThe assembly of semiconductor nanowires and carbon nanotubes into nanoscale devices and circuits could enable diverse applications in nanoelectronics and photonics. Individual semiconducting nanowires have already been configured as field-effect transistors, photodetectors and bio/chemical sensors. More sophisticated light-emitting diodes (LEDs) and complementary and diode logic devices have been realized using both n- and p-type semiconducting nanowires or nanotubes.
View Article and Find Full Text PDF