A photoelectron spectrum of H(2)O has been recorded at a resolution of 2 meV under Doppler-free conditions. Complex rotational structures appear in the individual vibrational states of the electronic X̃(+ 2)B(1) and Ã(+ 2)A(2) states in H(2)O(+). The rotational structures are analyzed and well reproduced using a spectator orbital model developed for rotationally resolved photoelectron spectroscopy.
View Article and Find Full Text PDFThe reactions of gas phase rhodium clusters, Rhn+/- (n<30), with nitrous oxide, N2O, have been investigated under single collision conditions by Fourier transform ion cyclotron resonance mass spectrometry. The only significant reaction observed is the sequential generation of oxides. Absolute rate constants for the reactions of all clusters have been determined and, in the case of the cationic clusters especially, they exhibit large fluctuations as a function of cluster size with local minima observed for n=5, 19, 28.
View Article and Find Full Text PDFThe decomposition of nitric oxide on small charged rhodium clusters Rh(n)(+/-) (6 < n < 30) has been investigated by Fourier transform ion cyclotron resonance mass spectrometry. For both cationic and anionic naked clusters, the rates of reaction with NO increase smoothly with cluster size in the range studied without the dramatic size-dependent fluctuations often associated with the reactions of transition-metal clusters. The cationic clusters react significantly faster than the anions and both exhibit rate constants exceeding collision rates calculated by average dipole orientation theory.
View Article and Find Full Text PDFThe first results are presented of a new experiment designed both to generate and characterize spectroscopically individual isomers of transition-metal cluster cations. As a proof of concept the one-photon mass-analyzed threshold ionization (MATI) spectrum of V3 has been recorded in the region of 44,000-45,000 cm-1. This study extends the range of a previous zero-kinetic-energy (ZEKE) photoelectron study of Yang et al.
View Article and Find Full Text PDF