Naturwissenschaften
December 2023
Termicin is an anti-fungal defensin that is disseminated from termite salivary glands. The peptide appears to be critical for the elimination with mutual grooming (allogrooming) of pathogenic spores (conidia) that have attached to the insect cuticle. There has been a recent selective sweep for an advantageous variant of this peptide in the subterranean termite Reticulitermes flavipes.
View Article and Find Full Text PDFAllogrooming appears to be essential in many social animals for protection from routine exposure to parasites. In social insects, it appears to be critical for the removal of pathogenic propagules from the cuticle before they can start an infectious cycle. For subterranean termites, this includes fungal spores commonly encountered in the soil, such as conidia, that can quickly germinate and penetrate the cuticle.
View Article and Find Full Text PDFReduced genetic diversity through inbreeding can negatively affect pathogen resistance. This relationship becomes more complicated in social species, such as social insects, since the chance of disease transmission increases with the frequency of interactions among individuals. However, social insects may benefit from social immunity, whereby individual physiological defenses may be bolstered by collective-level immune responses, such as grooming or sharing of antimicrobial substance through trophallaxis.
View Article and Find Full Text PDFIn social insects, alerting nestmates to the presence of a pathogen should be critical for limiting its spread and initiating social mechanisms of defense. Here we show that subterranean termites use elevated vibratory alarm behavior to help prevent fatal fungal infections. The elevated alarm leads to elevated social hygiene.
View Article and Find Full Text PDFEnviron Entomol
December 2018
Termites and fungi are the primary decomposers of dead wood. Interactions between wood-feeding termites and wood-rot fungi are inevitable given their shared food source. Termites have developed multiple defense strategies against infectious fungi, such as Metarhizium spp.
View Article and Find Full Text PDFWe identified the antifungal gene termicin in three species of Cryptocercus woodroaches. Cryptocercus represents the closest living cockroach lineage of termites, which suggests that the antifungal role of termicin evolved prior to the divergence of termites from other cockroaches. An analysis of Cryptocercus termicin and two β-1,3-glucanase genes (GNBP1 and GNBP2), which appear to work synergistically with termicin in termites, revealed evidence of selection in these proteins.
View Article and Find Full Text PDFTermites have had a long co-evolutionary history with prokaryotic and eukaryotic gut microbes. Historically, the role of these anaerobic obligate symbionts has been attributed to the nutritional welfare of the host. We provide evidence that protozoa (and/or their associated bacteria) colonizing the hindgut of the dampwood termite Zootermopsis angusticollis, synthesize multiple functional β-1,3-glucanases, enzymes known for breaking down β-1,3-glucans, the main component of fungal cell walls.
View Article and Find Full Text PDFSubterranean termites face strong pathogenic pressures from the ubiquitous soil fungus Metarhizium anisopliae, and rely on innate humoral and cellular, as well as behavioral immune defenses for protection. Reticulitermes termites secrete antifungal enzymes that exhibit strong β-1,3-glucanase activity associated with Gram-negative bacteria binding proteins (GNBPs), which prevent M. anisopliae from invading the hemocoel where it can evade immune responses.
View Article and Find Full Text PDFJ Insect Physiol
September 2011
Termites exploit environments that make them susceptible to infection and rapid disease transmission. Gram-negative bacteria binding proteins (GNBPs) signal the presence of microbes and in some insects directly damage fungal pathogens with β-1,3-glucanase activity. The subterranean termites Reticulitermes flavipes and Reticulitermes virginicus encounter soil entomopathogenic fungi such as Metarhizium anisopliae, which can evade host immune responses after penetrating the cuticle.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2009
Insect pests such as termites cause damages to crops and man-made structures estimated at over $30 billion per year, imposing a global challenge for the human economy. Here, we report a strategy for compromising insect immunity that might lead to the development of nontoxic, sustainable pest control methods. Gram-negative bacteria binding proteins (GNBPs) are critical for sensing pathogenic infection and triggering effector responses.
View Article and Find Full Text PDFSocial insects are model organisms for investigating molecular evolution in the innate immune system. Their diversity affords comparative analysis among closely related species, and group living is likely to contribute to the pathogen stress imposed on the immune system. We used different models of nucleotide substitution at nonsynonymous (amino acid altering) and synonymous (silent) sites to compare the different levels and type of selection among three immunity genes in 13 Australian termite species (Nasutitermes).
View Article and Find Full Text PDFMol Biol Evol
December 2004
We have identified and analyzed the mRNA sequence of 20 new defensin-like peptides from 11 Australian termite species of Nasutitermes and from an outgroup, Drepanotermes rubriceps. The sequence was amplified by reverse transcriptase PCR with a degenerate primer designed from termicin, an antifungal peptide previously characterized from the termite Pseudocanthotermes spiniger. All 20 genes show high sequence identity with P.
View Article and Find Full Text PDF