Background: Glioblastoma is an aggressive brain cancer in adults with a grave prognosis, aggressive radio and chemotherapy provide only a 15 months median survival.
Methods: We evaluated the tolerability and efficacy of the Ruthenium-based photosensitizer TLD-1433 with apo-Transferrin (Rutherrin) in the rat glioma 2 (RG-2) model. The specific tumor uptake ratio and photodynamic therapy (PDT) threshold of the rat glioblastoma and normal brain were determined, survival and CD8T-cell infiltration post-therapy were analyzed.
Regions of the normal arterial intima predisposed to atherosclerosis are sites of ongoing monocyte trafficking and also contain resident myeloid cells with features of dendritic cells. However, the pathophysiological roles of these cells are poorly understood. Here we found that intimal myeloid cells underwent reverse transendothelial migration (RTM) into the arterial circulation after systemic stimulation of pattern-recognition receptors (PRRs).
View Article and Find Full Text PDFResident macrophages densely populate the normal arterial wall, yet their origins and the mechanisms that sustain them are poorly understood. Here we use gene-expression profiling to show that arterial macrophages constitute a distinct population among macrophages. Using multiple fate-mapping approaches, we show that arterial macrophages arise embryonically from CX3CR1(+) precursors and postnatally from bone marrow-derived monocytes that colonize the tissue immediately after birth.
View Article and Find Full Text PDFAims: Retention of low-density lipoprotein (LDL) cholesterol beneath the arterial endothelium initiates an inflammatory response culminating in atherosclerosis. Since the overlying endothelium is healthy and intact early on, it is likely that LDL passes through endothelial cells by transcytosis. However, technical challenges have made confirming this notion and elucidating the mechanisms of transcytosis difficult.
View Article and Find Full Text PDFThe blood contains high concentrations of circulating extracellular vesicles (EVs), and their levels and contents are altered in several disease states, including cardiovascular disease. However, the function of circulating EVs, especially the microRNAs (miRNAs) that they contain, are poorly understood. We sought to determine the effect of secreted vesicles produced by quiescent endothelial cells (ECs) on monocyte inflammatory responses and to assess whether transfer of microRNAs occurs between these cells.
View Article and Find Full Text PDF