Context: The regulation of pubertal timing and reproductive axis maturation is influenced by a myriad of physiologic and environmental inputs yet remains incompletely understood.
Objective: To contrast differences in bile acid isoform profiles across defined stages of reproductive maturity in humans and a rat model of puberty and to characterize the role of bile acid signaling via hypothalamic expression of bile acid receptor populations in the rodent model.
Methods: Secondary analysis and pilot studies of clinical cohorts, rodent models, ex vivo analyses of rodent hypothalamic tissues.
The major facilitator superfamily domain 2a protein was identified recently as a lysophosphatidylcholine (LPC) symporter with high affinity for LPC species enriched with DHA (LPC-DHA). To test the hypothesis that reproductive state and choline intake influence plasma LPC-DHA, we performed a post hoc analysis of samples available through 10 weeks of a previously conducted feeding study, which provided two doses of choline (480 and 930 mg/d) to non-pregnant (n 21), third-trimester pregnant (n 26), and lactating (n 24) women; all participants consumed 200 mg of supplemental DHA and 22 % of their daily choline intake as 2H-labelled choline. The effects of reproductive state and choline intake on total LPC-DHA (expressed as a percentage of LPC) and plasma enrichments of labelled LPC and LPC-DHA were assessed using mixed and generalised linear models.
View Article and Find Full Text PDFDespite participation in overlapping metabolic pathways, the relationship between choline and vitamin B-12 has not been well characterized especially during pregnancy. We sought to determine the effects of maternal choline supplementation on vitamin B-12 status biomarkers in human and mouse pregnancy, hypothesizing that increased choline intake would improve vitamin B-12 status. Associations between common genetic variants in choline-metabolizing genes and vitamin B-12 status biomarkers were also explored in humans.
View Article and Find Full Text PDFExtracellular-signal-regulated kinases (ERK) 1 and 2 regulate many aspects of the hypothalamic-pituitary-gonadal axis. We sought to understand the role of ERK1/2 signaling in cells expressing a Cre allele regulated by the endogenous GnRHR promoter (GRIC-ERKdko). Adult female GRIC-ERKdko mice were hypogonadotropic and anovulatory.
View Article and Find Full Text PDF(distal-less homeobox 3) haploinsufficiency in mice has been shown to result in restricted fetal growth and placental defects. We previously showed that maternal choline supplementation (4X versus 1X choline) in the +/- mouse increased fetal and placental growth in mid-gestation. The current study sought to test the hypothesis that prenatal choline would modulate indicators of placenta function and development.
View Article and Find Full Text PDFThe placental epigenome regulates processes that affect placental and fetal development, and could be mediating some of the reported effects of maternal choline supplementation (MCS) on placental vascular development and nutrient delivery. As an extension of work previously conducted in pregnant mice, the current study sought to explore the effects of MCS on various epigenetic markers in the placenta. RNA and DNA were extracted from placentas collected on embryonic day 15.
View Article and Find Full Text PDFExtracellular signal-regulated kinase (ERK) signaling regulates hormone action in the reproductive axis, but specific mechanisms have yet to be completely elucidated. In the current study, ERK1 null and ERK2 floxed mice were combined with a gonadotropin-releasing hormone receptor (GnRHR)-internal ribosomal entry site-Cre (GRIC) driver. Female ERK double-knockout (ERKdko) animals were hypogonadotropic, resulting in anovulation and complete infertility.
View Article and Find Full Text PDFFetal growth is dependent on placental nutrient supply, which is influenced by placental perfusion and transporter abundance. Previous research indicates that adequate choline nutrition during pregnancy improves placental vascular development, supporting the hypothesis that choline may affect placental nutrient transport. The present study sought to determine the impact of maternal choline supplementation (MCS) on placental nutrient transporter abundance and nutrient metabolism during late gestation.
View Article and Find Full Text PDFImpairments in placental development can adversely affect pregnancy outcomes. The bioactive nutrient choline may mitigate some of these impairments, as suggested by data in humans, animals, and human trophoblasts. Herein, we investigated the effects of maternal choline supplementation (MCS) on parameters of fetal growth in a +/- (distal-less homeobox 3) mouse model of placental insufficiency.
View Article and Find Full Text PDFThe placental transcription factors Distal-less 3 (DLX3) and Glial cell missing-1 (GCM1) have been shown to coordinate the specific regulation of PGF in human trophoblast cell lines. While both factors independently have a positive effect on PGF gene expression, when combined, DLX3 acts as an antagonist to GCM. Despite this understanding, potential mechanisms accounting for this regulatory interaction remain unexplored.
View Article and Find Full Text PDFIntroduction: Normal placental vascular development is influenced by inflammatory, angiogenic and apoptotic processes, which may be modulated by choline through its role in membrane biosynthesis, cellular signaling and gene expression regulation. The current study examined the effect of maternal choline supplementation (MCS) on placental inflammatory, angiogenic and apoptotic processes during murine pregnancy.
Method: Pregnant dams were randomized to receive 1, 2 or 4 times (X) the normal choline content of rodent diets, and tissues were harvested on embryonic day (E) 10.
The natriuretic peptides, Atrial-, B-type and C-type natriuretric peptides (ANP, BNP, CNP), are regulators of many endocrine tissues and exert their effects predominantly through the activation of their specific guanylyl cyclase receptors (GC-A and GC-B) to generate cGMP. Whereas cGMP-independent signalling has been reported in response to natriuretic peptides, this is mediated via either the clearance receptor (Npr-C) or a renal-specific NPR-Bi isoform, which both lack intrinsic guanylyl cyclase activity. Here, we report evidence of GC-B-dependent cGMP-independent signalling in pituitary GH3 cells.
View Article and Find Full Text PDFSemin Reprod Med
March 2017
The hypothalamic-pituitary-gonadal axis controls reproduction via a series of hormones regulating gonadal function through interconnected feedback loops. Secretion of hypothalamic-derived gonadotropin-releasing hormone (GnRH) integrates inputs from higher brain centers to coordinate the activity of the pituitary gonadotrope and the biosynthesis and secretion of the gonadotropins which ultimately regulate gonadal function. Failure of GnRH to serve as the central integrator of this system has been associated with hypogonadotropic-hypogonadism and clinical infertility, while pharmacological application of GnRH analogs and gonadotropins have important implications of the treatment of such infertility.
View Article and Find Full Text PDFPlacental growth factor (PGF) is abundantly expressed by trophoblast cells within human placentae and is important for trophoblast development and placental vascularization. Circulating maternal serum levels of PGF are dynamically upregulated across gestation in normal pregnancies, whereas low circulating levels and placental production of PGF have been implicated in the pathogenesis of preeclampsia and other gestational diseases. However, the underlying molecular mechanism of regulating PGF expression in the human placenta remains poorly understood.
View Article and Find Full Text PDFFertility in mammals requires appropriate communication within the hypothalamic-pituitary-gonadal axis and the GnRH receptor (GnRHR) is a central conduit for this communication. The GnRHR resides in discrete membrane rafts and raft occupancy is required for signaling by GnRH. The present studies use immunoprecipitation and mass spectrometry to define peptides present within the raft associated with the GnRHR and flotillin-1, a key raft marker.
View Article and Find Full Text PDFBackground: Vitamin D and iron deficiencies frequently co-exist. It is now appreciated that mechanistic interactions between iron and vitamin D metabolism may underlie these associations.
Objective: We examined interrelations between iron and vitamin D status and their regulatory hormones in pregnant adolescents, who are a group at risk of both suboptimal vitamin D and suboptimal iron status.
Maternal choline intake during gestation may influence placental function and fetal health outcomes. Specifically, we previously showed that supplemental choline reduced placental and maternal circulating concentrations of the anti-angiogenic factor, fms-like tyrosine kinase-1 (sFLT1), in pregnant women as well as sFLT1 production in cultured human trophoblasts. The current study aimed to quantify the effect of choline on a wider array of biomarkers related to trophoblast function and to elucidate possible mechanisms.
View Article and Find Full Text PDFThe guanylyl cyclases, GC-A and GC-B, are selective receptors for atrial and C-type natriuretic peptides (ANP and CNP, respectively). In the anterior pituitary, CNP and GC-B are major regulators of cGMP production in gonadotropes and yet mouse models of disrupted CNP and GC-B indicate a potential role in growth hormone secretion. In the current study, we investigate the molecular and pharmacological properties of the CNP/GC-B system in somatotrope lineage cells.
View Article and Find Full Text PDFGnRH induces marked activation of the actin cytoskeleton in gonadotropes; however, the physiological consequences and cellular mechanisms responsible have yet to be fully elucidated. The current studies focus on the actin scaffolding protein cortactin. Using the gonadotrope-derived αT3-1 cell line, we found that cortactin is phosphorylated at Y(421), S(405), and S(418) in a time-dependent manner in response to the GnRH agonist buserelin (GnRHa).
View Article and Find Full Text PDFAm J Physiol Cell Physiol
July 2013
Matrix metalloproteinases (MMPs) are enzymes that regulate extracellular matrix composition and contribute to cell migration. Microarray studies in mouse placenta suggested that MMP-9 transcript abundance was dependent on distal-less 3 (Dlx3), a placental-specific transcriptional regulator; however, it was not clear if this was a direct or indirect effect. Here we investigate mechanism(s) for Dlx3-dependent MMP-9 gene transcription and gelatinase activity in placental trophoblasts.
View Article and Find Full Text PDFStimulation of pituitary gonadotropes by hypothalamic GnRH leads to the rapid expression of several immediate early genes that play key roles in orchestrating the response of the gonadotrope to hypothalamic stimuli. Elucidation of the signaling mechanisms that couple the GnRH receptor to this immediate early gene repertoire is critical for understanding the molecular basis of GnRH action. Here we identify signaling mechanisms that underlie regulation of the orphan nuclear receptor Nur77 as a GnRH-responsive immediate early gene in αT3-1 cells and mouse gonadotropes in culture.
View Article and Find Full Text PDFPeptidylarginine deiminase IV (PADI4) catalyzes the conversion of positively charged arginine and methylarginine residues to neutrally charged citrulline, and this activity has been linked to the repression of a limited number of target genes. To broaden our knowledge of the regulatory potential of PADI4, we utilized chromatin immunoprecipitation coupled with promoter tiling array (ChIP-chip) analysis to more comprehensively investigate the range of PADI4 target genes across the genome in MCF-7 breast cancer cells. Results showed that PADI4 is enriched in gene promoter regions near transcription start sites (TSSs); and, surprisingly, this pattern of binding is primarily associated with actively transcribed genes.
View Article and Find Full Text PDFThe binding of hypothalamic gonadotropin-releasing hormone (GnRH) to the pituitary GnRH receptor (GnRHR) is essential for reproductive function by stimulating the synthesis and secretion of gonadotropic hormones, luteinizing hormone (LH) and follicle stimulating hormone (FSH). Engagement of the GnRHR by GnRH initiates a complex series of signaling events that include the activation of various mitogen-activated protein kinase (MAPK) pathways, including extracellular signal-regulated kinase (ERK). GnRHR signaling is thought to initiate within specialized microdomains in the plasma membrane termed membrane rafts.
View Article and Find Full Text PDFMammalian reproductive cycles are controlled by an intricate interplay between the hypothalamus, pituitary and gonads. Central to the function of this axis is the ability of the pituitary gonadotrope to appropriately respond to stimulation by gonadotropin-releasing hormone (GnRH). This review focuses on the role of cell signaling and in particular, mitogen-activated protein kinase (MAPK) activities regulated by GnRH that are necessary for normal fertility.
View Article and Find Full Text PDF