Publications by authors named "Mark Ramsdale"

Background: Arabian killifish, Aphanius dispar, lives in marine coastal areas of the Middle East, as well as in streams that experience a wide range of salinities and temperatures. It has been used as a mosquito control agent and for studying the toxicities of environmental pollutants. A.

View Article and Find Full Text PDF
Article Synopsis
  • - Human fungal infections, often overlooked in research, account for over 1.5 million deaths annually, and recent studies have shed light on the complex interactions between fungi and their human hosts.
  • - Researchers are uncovering how fungi evade the immune system and contribute to serious health issues, while simultaneously highlighting emerging antifungal drug resistance as a significant threat.
  • - The review emphasizes the need for more effective immunotherapeutic strategies, while also addressing future challenges such as drug resistance and new pathogens emerging due to advancements in medicine.
View Article and Find Full Text PDF

The Arabian killifish, , is a small tropical teleost fish living in wide range of habitats in sea water and fresh water in the Middle East. Here, we report extraordinary fluorescent pigment cells in the Arabian killifish embryo. These cells appear brown in transmitted light, yellowish white in reflected light, and as strong fluorescence in GFP and RFP filters.

View Article and Find Full Text PDF

The pleiomorphic yeast is a significant pathogen in immunocompromised individuals. In the oral cavity, is an inhabitant of polymicrobial communities, and interspecies interactions promote hyphal formation and biofilm formation. colonizes the subgingival area, and the frequency of colonization increases in periodontal disease.

View Article and Find Full Text PDF

Elucidating the biology of yeast in its full complexity has major implications for science, medicine and industry. One of the most critical processes determining yeast life and physiology is cel-lular demise. However, the investigation of yeast cell death is a relatively young field, and a widely accepted set of concepts and terms is still missing.

View Article and Find Full Text PDF

Macrophages may induce fungal apoptosis to fight against C. albicans, as previously hypothesized by our group. To confirm this hypothesis, we analyzed proteins from C.

View Article and Find Full Text PDF

Programmed cell death (PCD) is a ubiquitous feature of multicellular and unicellular organisms. Eukaryotic microbes use PCD to regulate the development of specialized cells and structures. Many different types of PCD occur, ranging from apoptosis-like cell death, programmed necrosis and autophagic death.

View Article and Find Full Text PDF

A variety of proteases have been implicated in yeast PCD (programmed cell death) including the metacaspase Mca1 and the separase Esp1, the HtrA-like serine protease Nma111, the cathepsin-like serine carboxypeptideases and a range of vacuolar proteases. Proteasomal activity is also shown to have an important role in determining cell fate, with both pro- and anti-apoptotic roles. Caspase 3-, 6- and 8-like activities are detected upon stimulation of yeast PCD, but not all of this activity is associated with Mca1, implicating other proteases with caspase-like activity in the yeast cell death response.

View Article and Find Full Text PDF

MNL1, the Candida albicans homologue of an orphan Msn2-like gene (YER130c in Saccharomyces cerevisiae) has no known function. Here we report that MNL1 regulates weak acid stress responses. Deletion of MNL1 prevents the long-term adaptation of C.

View Article and Find Full Text PDF

One of the mediators of pleiotropic drug resistance in Saccharomyces cerevisiae is the ABC-transporter gene PDR5. This gene is regulated by at least two transcription factors with Zn(2)-Cys(6) finger DNA-binding motifs, Pdr1p and Pdr3p. In this work, we searched for functional homologues of these transcription factors in Candida albicans.

View Article and Find Full Text PDF

Greater understanding of programmed cell death (PCD) responses in pathogenic fungi may offer a chance of exploiting the fungal molecular death machinery to control fungal infections. Clearly identifiable differences between the death machineries of pathogens and their hosts, make this a feasible target. Evidence for PCD in a range of pathogenic fungi is discussed alongside an evaluation of the capacity of existing antifungal agents to promote apoptosis and other forms of cell death.

View Article and Find Full Text PDF

A better understanding of the molecular basis of programmed cell death (PCD) in fungi could provide information that is useful in the design of antifungal drugs that combat life-threatening fungal infections. Harsh environmental stresses, such as acetic acid or hydrogen peroxide, have been shown to induce PCD in the pathogenic fungus Candida albicans. In this study, we show that dying cells progress from an apoptotic state to a secondary necrotic state and that the rate at which this change occurs is proportional to the intensity of the stimulus.

View Article and Find Full Text PDF

The development of the molecular toolbox for the fungal pathogen Candida albicans has been hampered by its lack of an exploitable sexual cycle, its diploid nature, and its non-canonical genetic code. We describe the adaptation of the Cre-loxP site-specific recombination system as a tool for the efficient and controlled disruption of C. albicans genes.

View Article and Find Full Text PDF

New antifungal agents are urgently required to combat life-threatening infections caused by opportunistic fungal pathogens like Candida albicans. The manipulation of endogenous fungal programmed cell death responses could provide a basis for future therapies. Here we assess the physiology of death in C.

View Article and Find Full Text PDF

Twelve heterokaryotic strains of Heterobasidion annosum (Fr.) Bref. containing nuclei and mitochondria derived from British and North European populations were prepared by pairing homokaryotic strains and isolating hyphal tips from either side of interaction interfaces.

View Article and Find Full Text PDF

Ratios of nuclear genotypes observed in conidia from heterokaryotic strains of Heterobasidion annosum (Fr.) Bref., obtained from pairings between sympatrically derived, sib-related and non-sib-related homokaryons, commonly deviated from 1:1.

View Article and Find Full Text PDF