Publications by authors named "Mark Rainey"

Members of the four-member C-terminal EPS15-Homology Domain-containing (EHD) protein family play crucial roles in endocytic recycling of cell surface receptors from endosomes to the plasma membrane. In this study, we show that Ehd1 gene knockout in mice on a predominantly B6 background is embryonic lethal. Ehd1-null embryos die at mid-gestation with a failure to complete key developmental processes including neural tube closure, axial turning and patterning of the neural tube.

View Article and Find Full Text PDF

The C-terminal Eps15 homology domain-containing (EHD) proteins play a key role in endocytic recycling, a fundamental cellular process that ensures the return of endocytosed membrane components and receptors back to the cell surface. To define the in vivo biological functions of EHD1, we have generated Ehd1 knockout mice and previously reported a requirement of EHD1 for spermatogenesis. Here, we show that approximately 56% of the Ehd1-null mice displayed gross ocular abnormalities, including anophthalmia, aphakia, microphthalmia and congenital cataracts.

View Article and Find Full Text PDF

Background: Fumonisin B(1) (FB(1)) is a mycotoxin produced by a common fungal contaminant of corn. Ingestion of FB(1)-contaminated food is associated with increased risk for neural tube defects (NTDs). FB(1) induces NTDs in inbred LM/Bc mice.

View Article and Find Full Text PDF

Eps15 Homology Domain-containing 3 (EHD3), a member of the EHD protein family that regulates endocytic recycling, is the first protein reported to be specifically expressed in the glomerular endothelium in the kidney; therefore we generated Ehd3(-/-) mice and assessed renal development and pathology. Ehd3(-/-) animals showed no overt defects, and exhibited no proteinuria or glomerular pathology. However, as the expression of EHD4, a related family member, was elevated in the glomerular endothelium of Ehd3(-/-) mice and suggested functional compensation, we generated and analyzed Ehd3(-/-); Ehd4(-/-) mice.

View Article and Find Full Text PDF

The mammalian ferlins are calcium-sensing, C2 domain-containing proteins involved in vesicle trafficking. Myoferlin and dysferlin regulate myoblast fusion and muscle membrane resealing, respectively. Correspondingly, myoferlin is most highly expressed in singly nucleated myoblasts, whereas dysferlin expression is increased in mature, multinucleated myotubes.

View Article and Find Full Text PDF

The E3 ubiquitin ligase Casitas B lymphoma protein (Cbl) controls the ubiquitin-dependent degradation of EGF receptor (EGFR), but its role in regulating downstream signaling elements with which it associates and its impact on biological outcomes of EGFR signaling are less clear. Here, we demonstrate that stimulation of EGFR on human mammary epithelial cells disrupts adherens junctions (AJs) through Vav2 and Rac1/Cdc42 activation. In EGF-stimulated cells, Cbl regulates the levels of phosphorylated Vav2 thereby attenuating Rac1/Cdc42 activity.

View Article and Find Full Text PDF

Rationale: Cardiac membrane excitability is tightly regulated by an integrated network of membrane-associated ion channels, transporters, receptors, and signaling molecules. Membrane protein dynamics in health and disease are maintained by a complex ensemble of intracellular targeting, scaffolding, recycling, and degradation pathways. Surprisingly, despite decades of research linking dysfunction in membrane protein trafficking with human cardiovascular disease, essentially nothing is known regarding the molecular identity or function of these intracellular targeting pathways in excitable cardiomyocytes.

View Article and Find Full Text PDF

ERK2, a major effector of the BRAF oncogene, is a promiscuous protein kinase that has a strong preference for phosphorylating substrates on Ser-Pro or Thr-Pro motifs. As part of a program to understand the fundamental basis for ERK2 substrate recognition and catalysis, we have studied the mechanism by which ERK2 phosphorylates the transcription factor Ets-1 at Thr-38. A feature of the mechanism in the forward direction is a partially rate-limiting product release step (koff = 59 +/- 6 s(-1)), which is significant because to approach maximum efficiency substrates for ERK2 may evolve to ensure that ADP dissociation is rate-limiting.

View Article and Find Full Text PDF

Background: The C-terminal Eps15 homology domain-containing protein 1 (EHD1) is ubiquitously expressed and regulates the endocytic trafficking and recycling of membrane components and several transmembrane receptors. To elucidate the function of EHD1 in mammalian development, we generated Ehd1-/- mice using a Cre/loxP system.

Results: Both male and female Ehd1-/- mice survived at sub-Mendelian ratios.

View Article and Find Full Text PDF

The four highly homologous members of the C-terminal EH domain-containing (EHD) protein family (EHD1-4) regulate endocytic recycling. To delineate the role of EHD4 in normal physiology and development, mice with a conditional knockout of the Ehd4 gene were generated. PCR of genomic DNA and Western blotting of organ lysates from Ehd4(-/-) mice confirmed EHD4 deletion.

View Article and Find Full Text PDF

Non-malignant mammary epithelial cells (MECs) undergo acinar morphogenesis in three-dimensional Matrigel culture, a trait that is lost upon oncogenic transformation. Rho GTPases are thought to play important roles in regulating epithelial cell-cell junctions, but their contributions to acinar morphogenesis remain unclear. Here we report that the activity of Rho GTPases is down-regulated in non-malignant MECs in three-dimensional culture with particular suppression of Rac1 and Cdc42.

View Article and Find Full Text PDF

Many substrates of ERK2 contain a D-site, a sequence recognized by ERK2 that is used to promote catalysis. Despite lacking a canonical D-site, the substrate Ets-1 is displaced from ERK2 by peptides containing one. This suggests that Ets-1 may contain a novel or cryptic D-site.

View Article and Find Full Text PDF

Background: The four highly homologous human EHD proteins (EHD1-4) form a distinct subfamily of the Eps15 homology domain-containing protein family and are thought to regulate endocytic recycling. Certain members of this family have been studied in different cellular contexts; however, a lack of concurrent analyses of all four proteins has impeded an appreciation of their redundant versus distinct functions.

Results: Here, we analyzed the four EHD proteins both in mammalian cells and in a cross-species complementation assay using a C.

View Article and Find Full Text PDF

ERK2 is a proline-directed protein kinase that displays a high specificity for a single threonine (Thr-38) on the substrate Ets-1, which lies within the consensus sequence 36phi-chi-Thr-Pro39 (where phi is typically a small hydrophobic residue and chi appears to be unrestricted). Thr-38 lies in a long flexible N-terminal tail (residues 1-52), which also contains a second potential phosphorylation site, Ser-26. How Ets-1 binds ERK2 to promote the phosphorylation of Thr-38 while simultaneously discriminating against the phosphorylation of Ser-26 is unclear.

View Article and Find Full Text PDF

While mitogen-activated protein kinase signaling pathways constitute highly regulated networks of protein-protein interactions, little quantitative information for these interactions is available. Here we highlight recent fluorescence anisotropy binding studies that focus on the interactions of ERK1 and ERK2 with PEA-15 (antiapoptotic phosphoprotein enriched in astrocytes-15 kDa), a small protein that sequesters ERK2 in the cytoplasm. The regulation of ERK2 by PEA-15 is appraised in the light of a simple equilibrium-binding model for reversible ERK2 nucleoplasmic-cytoplasmic shuttling, which elaborates on the theory of Burack and Shaw (J.

View Article and Find Full Text PDF

Five hundred protein kinases phosphorylate 10 000 proteins in human cells. Frequently, more than one site in a protein is phosphorylated, and often by more than one protein kinase. The mechanistic basis underlying the overlapping specificity of the phospho-proteome is not well understood.

View Article and Find Full Text PDF

We are interested in the mechanism and regulation of the extracellular regulated protein kinases, ERK1 and ERK2, due to their key roles in cellular signal transduction and disease. Both enzymes phosphorylate a large number of structurally disparate proteins upon activation by phorbol esters, serum and growth factors, and are activated through a protein kinase cascade, termed the mitogen activated protein kinase (MAPK) pathway. ERK2 catalyses the transfer of the gamma-phosphate of adenosine triphosphate to serine or threonine residues found in Ser-Pro or Thr-Pro motifs on proteins.

View Article and Find Full Text PDF

Extracellular regulated protein kinase 2 (ERK2) is a eukaryotic protein kinase whose activity is regulated by mitogenic stimuli. To gain insight into the catalytic properties of ERK2 and to complement structure-function studies, we undertook a pre-steady state kinetic analysis of the enzyme. To do this, ERK2 was quantitatively activated by MAPKK1 in vitro by monitoring the stoichiometry and site specificity of phosphorylation using a combination of protein mass spectrometry, tryptic peptide analysis, and (32)P radiolabeling.

View Article and Find Full Text PDF