For air quality management, while numerical tools are mainly evaluated to assess their performances on absolute concentrations, this study assesses the impact of their settings on the robustness of model responses to emission reduction strategies for the main criteria pollutants. The effect of the spatial resolution and chemistry schemes is investigated. We show that whereas the spatial resolution is not a crucial setting (except for NO), the chemistry scheme has more impact, particularly when assessing hourly values of the absolute potential of concentrations.
View Article and Find Full Text PDFBackground: Recent reports have suggested that air pollution may impact thyroid function, although the evidence is still scarce and inconclusive. In this study we evaluated the association of exposure to air pollutants to thyroid function parameters in a nationwide sample representative of the adult population of Spain.
Methods: The Di@bet.
Exposure to air particulate matter has been linked with hypertension and blood pressure levels. The metabolic risks of air pollution could vary according to the specific characteristics of each area, and has not been sufficiently evaluated in Spain. We analyzed 1103 individuals, participants in a Spanish nationwide population based cohort study (di@bet.
View Article and Find Full Text PDFThe evaluation and intercomparison of air quality models is key to reducing model errors and uncertainty. The projects AQMEII3 and EURODELTA-Trends, in the framework of the Task Force on Hemispheric Transport of Air Pollutants and the Task Force on Measurements and Modelling, respectively (both task forces under the UNECE Convention on the Long Range Transport of Air Pollution, LTRAP), have brought together various regional air quality models to analyze their performance in terms of air concentrations and wet deposition, as well as to address other specific objectives. This paper jointly examines the results from both project communities by intercomparing and evaluating the deposition estimates of reduced and oxidized nitrogen (N) and sulfur (S) in Europe simulated by 14 air quality model systems for the year 2010.
View Article and Find Full Text PDFMediterranean Basin ecosystems, their unique biodiversity, and the key services they provide are currently at risk due to air pollution and climate change, yet only a limited number of isolated and geographically-restricted studies have addressed this topic, often with contrasting results. Particularities of air pollution in this region include high O levels due to high air temperatures and solar radiation, the stability of air masses, and dominance of dry over wet nitrogen deposition. Moreover, the unique abiotic and biotic factors (e.
View Article and Find Full Text PDFNitrogen (N) deposition has doubled the natural N inputs received by ecosystems through biological N fixation and is currently a global problem that is affecting the Mediterranean regions. We evaluated the existing relationships between increased atmospheric N deposition and biogeochemical indicators related to soil chemical factors and cryptogam species across semiarid central, southern, and eastern Spain. The cryptogam species studied were the biocrust-forming species Pleurochaete squarrosa (moss) and Cladonia foliacea (lichen).
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
July 2013
Existing descriptions of bi-directional ammonia (NH3) land-atmosphere exchange incorporate temperature and moisture controls, and are beginning to be used in regional chemical transport models. However, such models have typically applied simpler emission factors to upscale the main NH3 emission terms. While this approach has successfully simulated the main spatial patterns on local to global scales, it fails to address the environment- and climate-dependence of emissions.
View Article and Find Full Text PDFAnthropogenic N deposition poses a threat to European Mediterranean ecosystems. We combined data from an extant N deposition gradient (4.3-7.
View Article and Find Full Text PDFWe examined the consequences of the spatial heterogeneity of atmospheric ammonia (NH₃) by measuring and modelling NH₃ concentrations and deposition at 25 m grid resolution for a rural landscape containing intensive poultry farming, agricultural grassland, woodland and moorland. The emission pattern gave rise to a high spatial variability of modelled mean annual NH₃ concentrations and dry deposition. Largest impacts were predicted for woodland patches located within the agricultural area, while larger moorland areas were at low risk, due to atmospheric dispersion, prevailing wind direction and low NH3 background.
View Article and Find Full Text PDF