Publications by authors named "Mark R Dowling"

Purpose: Outcomes for Richter transformation (RT) are poor with current therapies. The efficacy and safety of anti-CD19 chimeric antigen receptor T-cell therapy (CAR-T) for RT are not established.

Methods: We performed an international multicenter retrospective study of patients with RT who received CAR-T.

View Article and Find Full Text PDF

Antibodies produced by antibody-secreting plasma cells (ASCs) underlie multiple forms of long-lasting immunity. Here we examined the mechanisms regulating ASC turnover and persistence using a genetic reporter to time-stamp ASCs. This approach revealed ASC lifespans as heterogeneous and falling on a continuum, with only a small fraction surviving for >60 days.

View Article and Find Full Text PDF

Vaccines work largely by generating long-lived plasma cells (LLPCs), but knowledge of how such cells are recruited is sparse. Although it is clear that LLPCs preferentially originate in germinal centers (GCs) and relocate to survival niches in bone marrow where they can persist for decades, the issues of the timing of LLPC recruitment and the basis of their retention remain uncertain. Here, using a genetic timestamping system in mice, we show that persistent PCs accrue in bone marrow at an approximately constant rate of one cell per hour over a period spanning several weeks after a single immunization with a model antigen.

View Article and Find Full Text PDF

Cytotoxic lymphocytes are essential for anti-tumor immunity, and for effective responses to cancer immunotherapy. Natural killer cell granule protein 7 (NKG7) is expressed at high levels in cytotoxic lymphocytes infiltrating tumors from patients treated with immunotherapy, but until recently, the role of this protein in cytotoxic lymphocyte function was largely unknown. Unexpectedly, we found that highly CD8+ T cell-immunogenic murine colon carcinoma (MC38-OVA) tumors grew at an equal rate in and littermate mice, suggesting NKG7 may not be necessary for effective CD8+ T cell anti-tumor activity.

View Article and Find Full Text PDF

In eukaryotic cells, messenger RNA (mRNA) molecules are exported from the nucleus to the cytoplasm, where they are translated. The highly conserved protein nuclear RNA export factor1 (Nxf1) is an important mediator of this process. Although studies in yeast and in human cell lines have shed light on the biochemical mechanisms of Nxf1 function, its contribution to mammalian physiology is less clear.

View Article and Find Full Text PDF

Understanding how the strength of an effector T cell response is regulated is a fundamental problem in immunology with implications for immunity to pathogens, autoimmunity, and immunotherapy. The initial magnitude of the T cell response is determined by the sum of independent signals from antigen, co-stimulation and cytokines. By applying quantitative methods, the contribution of each signal to the number of divisions T cells undergo (division destiny) can be measured, and the resultant exponential increase in response magnitude accurately calculated.

View Article and Find Full Text PDF

Intracellular Ca and cAMP typically cause opposing effects on airway smooth muscle contraction. Receptors that stimulate these pathways are therapeutic targets in asthma and chronic obstructive pulmonary disease. However, the interactions between different G protein-coupled receptors (GPCRs) that evoke cAMP and Ca signals in human bronchial airway smooth muscle cells (hBASMCs) are poorly understood.

View Article and Find Full Text PDF

Background And Purpose: Human lung fibroblasts (HLF) express high levels of the LPA receptor, a GPCR that responds to the endogenous lipid mediator, lysophosphatidic acid (LPA). Several molecular species or analogues of LPA exist and have been detected in biological fluids such as serum and plasma. The most widely expressed of the LPA receptor family is the LPA receptor, which predominantly couples to G , G and G proteins.

View Article and Find Full Text PDF

Adaptive immune responses are complex dynamic processes whereby B and T cells undergo division and differentiation triggered by pathogenic stimuli. Deregulation of the response can lead to severe consequences for the host organism ranging from immune deficiencies to autoimmunity. Tracking cell division and differentiation by flow cytometry using fluorescent probes is a major method for measuring progression of lymphocyte responses, both in vitro and in vivo.

View Article and Find Full Text PDF

T cell responses are initiated by antigen and promoted by a range of costimulatory signals. Understanding how T cells integrate alternative signal combinations and make decisions affecting immune response strength or tolerance poses a considerable theoretical challenge. Here, we report that T cell receptor (TCR) and costimulatory signals imprint an early, cell-intrinsic, division fate, whereby cells effectively count through generations before returning automatically to a quiescent state.

View Article and Find Full Text PDF

Stochastic variation in cell cycle time is a consistent feature of otherwise similar cells within a growing population. Classic studies concluded that the bulk of the variation occurs in the G1 phase, and many mathematical models assume a constant time for traversing the S/G2/M phases. By direct observation of transgenic fluorescent fusion proteins that report the onset of S phase, we establish that dividing B and T lymphocytes spend a near-fixed proportion of total division time in S/G2/M phases, and this proportion is correlated between sibling cells.

View Article and Find Full Text PDF

Muscarinic receptor antagonists and β-adrenoceptor agonists are used in the treatment of obstructive airway disease and overactive bladder syndrome. Here we review the pharmacological rationale for their combination. Muscarinic receptors and β-adrenoceptors are physiological antagonists for smooth muscle tone in airways and bladder.

View Article and Find Full Text PDF

Background And Purpose: The molecular mechanism underlying the clinical efficacy of FTY720-P is thought to involve persistent internalization and enhanced degradation of the S1P1 receptor subtype (S1P1R). We have investigated whether receptor binding kinetics and β-arrestin recruitment could play a role in the persistent internalization of the S1P1R by FTY720-P.

Experimental Approach: [(3) H]-FTY720-P and [(33) P]-S1P were used to label CHO-S1P1/3Rs for binding studies.

View Article and Find Full Text PDF

Interest in cell heterogeneity and differentiation has recently led to increased use of time-lapse microscopy. Previous studies have shown that cell fate may be determined well in advance of the event. We used a mixture of automation and manual review of time-lapse live cell imaging to track the positions, contours, divisions, deaths and lineage of 44 B-lymphocyte founders and their 631 progeny in vitro over a period of 108 hours.

View Article and Find Full Text PDF

A fundamental issue in understanding homeostasis of the hematopoietic system is to what extent intrinsic and extrinsic factors regulate cell fate. We recently revisited this issue for the case of blood platelets and concluded that platelet life span is largely regulated by internal factors, in contrast to the long-held view that accumulated damage from the environment triggers clearance. However, it is known that in humans there is an ongoing fixed requirement for platelets to maintain hemostasis and prevent bleeding; hence a proportion of platelets may be consumed in such processes before the end of their natural life span.

View Article and Find Full Text PDF

Studies under nonphysiological conditions suggest that long receptor residency time is responsible for the 24-h duration of action of the long-acting muscarinic antagonist (LAMA) tiotropium. Our aim was to determine how clinically relevant dissociation rates under more physiological conditions influence the differences in onset of action between tiotropium and 3-[(cyclopentylhydroxyphenylacetyl oxy]-1,1-dimethyl-pyrrolidinium bromide (NVA237), a once-daily dry-powder formulation of the LAMA glycopyrronium bromide in development for chronic obstructive pulmonary disease. In addition, we have investigated kinetic selectivity at each of the muscarinic receptor subtypes to determine whether the improved cardiovascular therapeutic index obtained with NVA237 in animal models is attributable to differences in kinetic rate constants.

View Article and Find Full Text PDF

In response to stimulation, B lymphocytes pursue a large number of distinct fates important for immune regulation. Whether each cell's fate is determined by external direction, internal stochastic processes, or directed asymmetric division is unknown. Measurement of times to isotype switch, to develop into a plasmablast, and to divide or to die for thousands of cells indicated that each fate is pursued autonomously and stochastically.

View Article and Find Full Text PDF

Like many nucleated mammalian cells, the life and death of the anucleate platelet is regulated by Bcl-2 family proteins. Platelets depend on Bcl-x(L) for survival. Bcl-x(L) maintains platelet viability by restraining the killer protein Bak.

View Article and Find Full Text PDF

A time-dependent decrease in S1P potency was observed in a [(35)S]-GTPγS binding assay using CHO-cell membranes expressing the human S1P(2) receptor. After a three hour incubation with membranes the pEC(50) of S1P was 7.09 ± 0.

View Article and Find Full Text PDF

It is believed that megakaryocytes undergo a specialized form of apoptosis to shed platelets. Conversely, a range of pathophysiological insults, including chemotherapy, are thought to cause thrombocytopenia by inducing the apoptotic death of megakaryocytes and their progenitors. To resolve this paradox, we generated mice with hematopoietic- or megakaryocyte-specific deletions of the essential mediators of apoptosis, Bak and Bax.

View Article and Find Full Text PDF