The human gut microbiome plays a crucial role in immune function. The synbiotic consortium or Defined Microbial Assemblage™ (DMA™) Medical Food product, SBD121, consisting of probiotic microbes and prebiotic fibers was designed for the clinical dietary management of rheumatoid arthritis. A 28-day repeated administration study was performed to evaluate the oral toxicity of SBD121 in male and female rats (age/weight at study start: 60 days/156-264 g) administered levels of 0, 4.
View Article and Find Full Text PDFEnteric hyperoxaluria (EH) is a metabolic disease caused by excessive absorption of dietary oxalate leading to the formation of chronic kidney stones and kidney failure. There are no approved pharmaceutical treatments for EH. SYNB8802 is an engineered bacterial therapeutic designed to consume oxalate in the gut and lower urinary oxalate as a potential treatment for EH.
View Article and Find Full Text PDFPhenylketonuria (PKU) is a rare disease caused by biallelic mutations in the PAH gene that result in an inability to convert phenylalanine (Phe) to tyrosine, elevated blood Phe levels and severe neurological complications if untreated. Most patients are unable to adhere to the protein-restricted diet, and thus do not achieve target blood Phe levels. We engineered a strain of E.
View Article and Find Full Text PDFThe development of therapeutics depends on predictions of clinical activity from pre-clinical data. We have previously described SYNB1618, an engineered bacterial therapeutic (synthetic biotic) for the treatment of Phenylketonuria (PKU), a rare genetic disease that leads to accumulation of plasma phenylalanine (Phe) and severe neurological complications. SYNB1618 consumes Phe in preclinical models, healthy human volunteers, and PKU patients.
View Article and Find Full Text PDFEngineered bacteria (synthetic biotics) represent a new class of therapeutics that leverage the tools of synthetic biology. Translational testing strategies are required to predict synthetic biotic function in the human body. Gut-on-a-chip microfluidics technology presents an opportunity to characterize strain function within a simulated human gastrointestinal tract.
View Article and Find Full Text PDFA complex interplay of metabolic and immunological mechanisms underlies many diseases that represent a substantial unmet medical need. There is an increasing appreciation of the role microbes play in human health and disease, and evidence is accumulating that a new class of live biotherapeutics comprised of engineered microbes could address specific mechanisms of disease. Using the tools of synthetic biology, nonpathogenic bacteria can be designed to sense and respond to environmental signals in order to consume harmful compounds and deliver therapeutic effectors.
View Article and Find Full Text PDFThe intestine is a major source of systemic ammonia (NH); thus, capturing part of gut NH may mitigate disease symptoms in conditions of hyperammonemia such as urea cycle disorders and hepatic encephalopathy. As an approach to the lowering of blood ammonia arising from the intestine, we engineered the orally delivered probiotic Nissle 1917 to create strain SYNB1020 that converts NH to l-arginine (l-arg). We up-regulated arginine biosynthesis in SYNB1020 by deleting a negative regulator of l-arg biosynthesis and inserting a feedback-resistant l-arg biosynthetic enzyme.
View Article and Find Full Text PDFWhen most people think of human development, they tend to consider only human cells and organs. Yet there is another facet that involves human-associated microbial communities. A microbial perspective of human development provides opportunities to refine our definitions of healthy prenatal and postnatal growth and to develop innovative strategies for disease prevention and treatment.
View Article and Find Full Text PDFChildhood undernutrition is a major global health challenge. Although current therapeutic approaches have reduced mortality in individuals with severe disease, they have had limited efficacy in ameliorating long-term sequelae, notably stunting, immune dysfunction, and neurocognitive deficits. Recent work is providing insights about the role of impaired development of the human gut microbiota in disease pathogenesis, leading to new concepts for treatment and prevention.
View Article and Find Full Text PDFUndernourished children exhibit impaired development of their gut microbiota. Transplanting microbiota from 6- and 18-month-old healthy or undernourished Malawian donors into young germ-free mice that were fed a Malawian diet revealed that immature microbiota from undernourished infants and children transmit impaired growth phenotypes. The representation of several age-discriminatory taxa in recipient animals correlated with lean body mass gain; liver, muscle, and brain metabolism; and bone morphology.
View Article and Find Full Text PDFIdentifying interventions that more effectively promote healthy growth of children with undernutrition is a pressing global health goal. Analysis of human milk oligosaccharides (HMOs) from 6-month-postpartum mothers in two Malawian birth cohorts revealed that sialylated HMOs are significantly less abundant in those with severely stunted infants. To explore this association, we colonized young germ-free mice with a consortium of bacterial strains cultured from the fecal microbiota of a 6-month-old stunted Malawian infant and fed recipient animals a prototypic Malawian diet with or without purified sialylated bovine milk oligosaccharides (S-BMO).
View Article and Find Full Text PDF