https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&term=Mark+Prytyskach%5Bauthor%5D&datetype=edat&usehistory=y&retmax=1&tool=RemsenMedia&email=hello@remsenmedia.com&api_key=81853a771c3a3a2c6b2553a65bc33b056f08https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&WebEnv=MCID_679579bd7dd5c6f7bc0eab3a&query_key=1&retmode=xml&retstart=-10&retmax=25&tool=RemsenMedia&email=hello@remsenmedia.com&api_key=81853a771c3a3a2c6b2553a65bc33b056f08 Publications by Mark Prytyskach | LitMetric

Publications by authors named "Mark Prytyskach"

Nanoparticulate albumin bound paclitaxel (nab-paclitaxel, nab-PTX) is among the most widely prescribed nanomedicines in clinical use, yet it remains unclear how nanoformulation affects nab-PTX behaviour in the tumour microenvironment. Here, we quantified the biodistribution of the albumin carrier and its chemotherapeutic payload in optically cleared tumours of genetically engineered mouse models, and compared the behaviour of nab-PTX with other clinically relevant nanoparticles. We found that nab-PTX uptake is profoundly and distinctly affected by cancer-cell autonomous RAS signalling, and RAS/RAF/MEK/ERK inhibition blocked its selective delivery and efficacy.

View Article and Find Full Text PDF

Radiation sensitivity varies greatly between tissues. The transcription factor p53 mediates the response to radiation; however, the abundance of p53 protein does not correlate well with the extent of radiosensitivity across tissues. Given recent studies showing that the temporal dynamics of p53 influence the fate of cultured cells in response to irradiation, we set out to determine the dynamic behavior of p53 and its impact on radiation sensitivity in vivo.

View Article and Find Full Text PDF

Background Anaplastic thyroid cancer (ATC) is aggressive with a poor prognosis, partly because of the immunosuppressive microenvironment created by tumor-associated macrophages (TAMs). Purpose To understand the relationship between TAM infiltration, tumor vascularization, and corresponding drug delivery by using ferumoxytol-enhanced MRI and macrin in an ATC mouse model. Materials and Methods ATC tumors were generated in 6-8-week-old female B6129SF1/J mice through intrathyroid injection to model orthotopic tumors, or intravenously to model hematogenous metastasis, and prospectively enrolled randomly into treatment cohorts ( = 94 total; August 1, 2018, to January 15, 2020).

View Article and Find Full Text PDF

Microtubules (MTs) mediate mitosis, directional signaling, and are therapeutic targets in cancer. Yet in vivo analysis of cancer cell MT behavior within the tumor microenvironment remains challenging. Here we developed an imaging pipeline using plus-end tip tracking and intravital microscopy to quantify MT dynamics in live xenograft tumor models.

View Article and Find Full Text PDF

Interpreting how multicellular interactions in the tumor affect resistance pathways to BRAF and MEK1/2 MAPK inhibitors (MAPKi) remains a challenge. To investigate this, we profiled global ligand-receptor interactions among tumor and stromal/immune cells from biopsies of MAPK-driven disease. MAPKi increased tumor-associated macrophages (TAMs) in some patients, which correlated with poor clinical response, and MAPKi coamplified bidirectional tumor-TAM signaling via receptor tyrosine kinases (RTKs) including AXL, MERTK, and their ligand GAS6.

View Article and Find Full Text PDF

Cell-to-cell heterogeneity can substantially impact drug response, especially for monoclonal antibody (mAb) therapies that may exhibit variability in both delivery (pharmacokinetics) and action (pharmacodynamics) within solid tumors. However, it has traditionally been difficult to examine the kinetics of mAb delivery at a single-cell level and in a manner that enables controlled dissection of target-dependent and -independent behaviors. To address this issue, here we developed an in vivo confocal (intravital) microscopy approach to study single-cell mAb pharmacology in a mosaic xenograft comprising a mixture of cancer cells with variable expression of the receptor HER2.

View Article and Find Full Text PDF

Prodrug strategies that facilitate localized and controlled activity of small-molecule therapeutics can reduce systemic exposure and improve pharmacokinetics, yet limitations in activation chemistry have made it difficult to assign tunable multifunctionality to prodrugs. Here, we present the design and application of a modular small-molecule caging strategy that couples bioorthogonal cleavage with a self-immolative linker and an aliphatic anchor. This strategy leverages recently discovered in vivo catalysis by a nanoencapsulated palladium compound (Pd-NP), which mediates alloxylcarbamate cleavage and triggers release of the activated drug.

View Article and Find Full Text PDF

Tumor-associated macrophages (TAMs) are widely implicated in cancer progression, and TAM levels can influence drug responses, particularly to immunotherapy and nanomedicines. However, it has been difficult to quantify total TAM numbers and their dynamic spatiotemporal distribution in a non-invasive and translationally relevant manner. Here, we address this need by developing a pharmacokinetically optimized, Cu-labeled polyglucose nanoparticle (Macrin) for quantitative positron emission tomography (PET) imaging of macrophages in tumors.

View Article and Find Full Text PDF

The receptor tyrosine kinase Mer (MERTK) is a promising drug target in cancer, where it can influence the metastasis-promoting signaling of both tumor cells and immune cells alike; however, no small molecule probes currently exist to selectively image Mer. In this work, we design and synthesize a selective near-infrared fluorescent molecular probe of Mer (MERi-SiR). Confocal microscopy of metastases in mice reveals predominant probe accumulation in Mer-expressing tumor-associated macrophages.

View Article and Find Full Text PDF