Publications by authors named "Mark Prelas"

Fuller's earth spherical beads using chitosan as a binder were prepared for the removal of strontium ions from aqueous solution. The adsorbents were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), which revealed the porous nature of the beads. The Brunauer⁻Emmett⁻Teller (BET) surface area of the beads was found to be 48.

View Article and Find Full Text PDF

This work demonstrates the development of diamond sensors with reliable contacts using a new metallization formula, which can operate under high-pressure gas environment. The metallization was created using thin film layers of titanium, platinum, gold and nickel deposited on a single crystal electronic grade CVD diamond chip. The contacts were 2 mm in diameter with thickness of 50/5/20/150 nm of Ti:Pt:Au:Ni.

View Article and Find Full Text PDF

This paper discusses the use of one of the safest isotopes known isotopes, Kr-85, as a candidate fuel source for deep space missions. This isotope comes from 0.286% of fission events.

View Article and Find Full Text PDF

This paper demonstrates the ability of diamond sensors to respond to beta radiation. A Chemical Vapor Deposition (CVD) single crystal diamond was used in this work. The diamond crystal has a dimension of 4.

View Article and Find Full Text PDF

Radiation damage is a significant concern with both alphavoltaic and betavoltaic cells because their performance degrades, especially with high-energy - (>200keV) beta and alpha particles. Indirect excitation methods, such as the Photon Intermediate Direct Energy Conversion (PIDEC) framework, can protect the transducer from radiation. A nuclear battery using a Sr beta source was constructed by the author's research group, which demonstrated the radiation resistance of a PIDEC cell driven by beta particles (PIDECβ cell).

View Article and Find Full Text PDF

Simulation of beta particle transport from a Ni-63 radioisotope in silicon using the Monte Carlo N-Particle (MCNP) transport code for monoenergetic beta particle average energy, monoenergetic beta particle maximum energy, and the more precise full beta energy spectrum of Ni-63 were demonstrated. The beta particle penetration depth and the shape of the energy deposition varied significantly for different transport approaches. A penetration depth of 2.

View Article and Find Full Text PDF

Nuclear batteries based on silicon carbide betavoltaic cells have been studied extensively in the literature. This paper describes an analysis of design parameters, which can be applied to a variety of materials, but is specific to silicon carbide. In order to optimize the interface between a beta source and silicon carbide p-n junction, it is important to account for the specific isotope, angular distribution of the beta particles from the source, the energy distribution of the source as well as the geometrical aspects of the interface between the source and the transducer.

View Article and Find Full Text PDF

Diamond in nanoparticle form is a promising material that can be used as a robust and chemically stable catalyst support in fuel cells. It has been studied and characterized physically and electrochemically, in its thin film and powder forms, as reported in the literature. In the present work, the electrochemical properties of undoped and boron-doped diamond nanoparticle electrodes, fabricated using the ink-paste method, were investigated.

View Article and Find Full Text PDF