Publications by authors named "Mark Pitzer"

Huntington׳s disease (HD) is a neurodegenerative disorder caused by a mutation in the HTT gene (mHTT) encoding the protein huntingtin. An expansion in the gene׳s CAG repeat length renders a misfolded, dysfunctional protein with an abnormally long glutamine (Q) stretch at the N terminus that often incorporates into inclusion bodies and leads to neurodegeneration in many regions of the brain. HD is characterized by motor and cognitive decline as well as mood disorders, with depression being particularly common.

View Article and Find Full Text PDF

To date, a therapy for Huntington's disease (HD), a genetic, neurodegenerative disorder, remains elusive. HD is characterized by cell loss in the basal ganglia, with particular damage to the putamen, an area of the brain responsible for initiating and refining motor movements. Consequently, patients exhibit a hyperkinetic movement disorder.

View Article and Find Full Text PDF

Survival rates of dopamine (DA) neurons grafted to the denervated striatum are extremely poor (5-20%). Gene transfer of survival promoting factors, such as the anti-apoptotic protein bcl-2, to mesencephalic DA neurons prior to transplantation (ex vivo transduction) offers a novel approach to increase graft survival. However, specific criteria to assess the efficacy of various vectors must be adhered to in order to reasonably predict successful gene transfer with appropriate timing and levels of protein expression.

View Article and Find Full Text PDF

Huntington's disease (HD) is a fatal, genetic, neurological disorder resulting from a trinucleotide repeat expansion in the gene that encodes for the protein huntingtin. These excessive repeats confer a toxic gain of function on huntingtin, which leads to the degeneration of striatal and cortical neurons and a devastating motor, cognitive, and psychological disorder. Trophic factor administration has emerged as a compelling potential therapy for a variety of neurodegenerative disorders, including HD.

View Article and Find Full Text PDF

One experimental therapy for Parkinson's disease (PD) is the transplantation of embryonic ventral mesencephalic tissue. Unfortunately, up to 95% of grafted neurons die, many via apoptosis. Activated caspases play a key role in execution of the apoptotic pathway; therefore, exposure to caspase inhibitors may provide an effective intervention strategy for protection against apoptotic cell death.

View Article and Find Full Text PDF

Grafts of primary ventral mesencephalic tissue and cell suspensions to the denervated striatum are currently utilized as a treatment strategy for Parkinson's disease. Survival rates of grafted dopamine (DA) neurons are extremely poor (5-20%) and is even poorer in grafts to the aged striatum. Short pretreatment of grafted cells with various survival-promoting agents has elicited 2- to 3-fold improvements in these survival rates.

View Article and Find Full Text PDF

One promising therapy for the treatment of Parkinson's disease is transplantation of embryonic ventral mesencephalic tissue. Unfortunately, up to 95% of grafted cells die, many via apoptosis. In this study we attempted to prevent anoikis-induced cell death, which is triggered during the preparation of cells for grafting, and examine the impact on graft viability and function.

View Article and Find Full Text PDF

The present series of experiments investigated the effects of vascular endothelial growth factor (VEGF165) on adult rat striatal cerebrovasculature and embryonic dopamine (DA) neuron allografts in a rat model of Parkinson's disease (PD). We examined VEGF165's ability to (1) alter the vascular network of the adult rat striatum, (2) influence the vascular growth of solid embryonic day 14 (E14) ventral mesencephalic (VM) grafts when placed into a VEGF-pretreated host striatum, (3) alter the function and survival of E14 VM grafts when transplanted into an adult DA-deleted striatum, and (4) influence cell survival and neurite growth in cultures of E14 VM cells. We demonstrate here that a single bolus injection of VEGF165 into the adult rat striatum significantly increases the amount of vasculature in the vicinity of the injection site in a delayed and transient manner when compared to saline controls.

View Article and Find Full Text PDF