Publications by authors named "Mark Pierce"

Checkpoint immunotherapy has made great strides in the treatment of solid tumors, but many patients do not respond to immune checkpoint inhibitors. Identification of tumor-infiltrating cytotoxic T cells (CTLs) has the potential to stratify patients and monitor immunotherapy responses. In this study, the design of cluster of differentiation (CD8) T cell-targeted nanoprobes that emit shortwave infrared (SWIR) light in the second tissue-transparent window for noninvasive, real-time imaging of CTLs in murine models of breast cancer is presented.

View Article and Find Full Text PDF

In humans, perspiration regulates core body temperature. Therefore, objectively evaluating it is essential for studying sweat gland function and mechanisms, particularly in antiperspirant efficacy studies. Various approaches have been developed for measuring human perspiration and evaluating antiperspirant efficacy, but are unsuitable for robust and routine clinical testing applications.

View Article and Find Full Text PDF

Significance: Hyperspectral cameras capture spectral information at each pixel in an image. Acquired spectra can be analyzed to estimate quantities of absorbing and scattering components, but the use of traditional fitting algorithms over megapixel images can be computationally intensive. Deep learning algorithms can be trained to rapidly analyze spectral data and can potentially process hyperspectral camera data in real time.

View Article and Find Full Text PDF

Metastatic breast cancer remains a significant source of mortality amongst breast cancer patients and is generally considered incurable in part due to the difficulty in detection of early micro-metastases. The pre-metastatic niche (PMN) is a tissue microenvironment that has undergone changes to support the colonization and growth of circulating tumor cells, a key component of which is the myeloid-derived suppressor cell (MDSC). Therefore, the MDSC has been identified as a potential biomarker for PMN formation, the detection of which would enable clinicians to proactively treat metastases.

View Article and Find Full Text PDF

The editorial introduces the JBO Special Section on Short Wave Infrared Techniques and Applications in Biomedical Optics.

View Article and Find Full Text PDF

Fiber optic bundles are used in narrow-diameter medical and industrial instruments for acquiring images from confined locations. Images transmitted through these bundles contain only one pixel of information per fiber core and fail to capture information from the cladding region between cores. Both factors limit the spatial resolution attainable with fiber bundles.

View Article and Find Full Text PDF

Significance: The shortwave infrared (SWIR) optical window (∼900 to 2000 nm) has attracted interest for deep tissue imaging due to the lower scattering of light. SWIR spatial frequency domain imaging (SWIR SFDI) provides wide-field tissue optical property measurements in this wavelength band. Key design and performance characteristics, such as portability, wavelength selection, measurement resolution, and the effect of skin have not yet been addressed for SWIR SFDI.

View Article and Find Full Text PDF

Functional Neurological Disorders are a common and debilitating group of diseases that have been the subject of stigma and confusion across medical history. It is well-documented that prognosis and even possible resolution of symptoms are linked to successful delivery of the diagnosis by the clinician, and correct understanding of diagnosis by the patient. In the following article, we delineate the nature of these disorders and provide an overview to assist providers successfully navigate the communication of these diagnoses to patients and families.

View Article and Find Full Text PDF

Fluorescence-guided surgery (FGS) is an emerging technique for tissue visualization during surgical procedures. Structures of interest are labeled with exogenous probes whose fluorescent emissions are acquired and viewed in real-time with optical imaging systems. This study investigated rare-earth-doped albumin-encapsulated nanocomposites (REANCs) as short-wave infrared emitting contrast agents for FGS.

View Article and Find Full Text PDF

Background: The ability to detect tumor-specific biomarkers in real-time using optical imaging plays a critical role in preclinical studies aimed at evaluating drug safety and treatment response. In this study, we engineered an imaging platform capable of targeting different tumor biomarkers using a multi-colored library of nanoprobes. These probes contain rare-earth elements that emit light in the short-wave infrared (SWIR) wavelength region (900-1700 nm), which exhibits reduced absorption and scattering compared to visible and NIR, and are rendered biocompatible by encapsulation in human serum albumin.

View Article and Find Full Text PDF

Therapeutic drug monitoring (TDM) in cancer, while imperative, has been challenging due to inter-patient variability in drug pharmacokinetics. Additionally, most pharmacokinetic monitoring is done by assessments of the drugs in plasma, which is not an accurate gauge for drug concentrations in target tumor tissue. There exists a critical need for therapy monitoring tools that can provide real-time feedback on drug efficacy at target site to enable alteration in treatment regimens early during cancer therapy.

View Article and Find Full Text PDF

Water and lipids are key participants in many biological processes, but there are few non-invasive methods that provide quantification of these components in vivo, and none that can isolate and quantify lipids in the blood. Here we develop a new imaging modality termed shortwave infrared meso-patterned imaging (SWIR-MPI) to provide label-free, non-contact, spatial mapping of water and lipid concentrations in tissue. The method utilizes patterned hyperspectral illumination to target chromophore absorption bands in the 900-1,300 nm wavelength range.

View Article and Find Full Text PDF

We demonstrate the possibility of measuring FRET efficiency with a low-cost frequency-domain fluorescence lifetime imaging microscope (FD-FLIM). The system utilizes single-frequency-modulated excitation, which enables the use of cost-effective laser sources and electronics, simplification of data acquisition and analysis, and a dual-channel detection capability. Following calibration with coumarin 6, we measured the apparent donor lifetime in mTFP1-mVenus FRET standards expressed in living cells.

View Article and Find Full Text PDF

Optical coherence tomography (OCT) is a noninvasive, high-resolution, cross-sectional imaging technique. To date, OCT has been demonstrated in several areas of dentistry, primarily using wavelengths around 1,300 nm, low numerical aperture (NA) imaging lenses, and detectors insensitive to the polarization of light. The objective of this study is to compare the performance of three commercially available OCT systems operating with alternative wavelengths, imaging lenses, and detectors for OCT imaging of dental enamel.

View Article and Find Full Text PDF

This Letter presents a framework for computational imaging (CI) in fiber-bundle-based endoscopy systems. Multiple observations are acquired of objects spatially modulated with different random binary masks. Sparse-recovery algorithms then reconstruct images with more resolved pixels than individual fibers in the bundle.

View Article and Find Full Text PDF

Gene therapy is emerging as the next generation of therapeutic modality with United States Food and Drug Administration approved gene-engineered therapy for cancer and a rare eye-related disorder, but the challenge of real-time monitoring of on-target therapy response remains. In this study, we have designed a theranostic nanoparticle composed of shortwave-infrared-emitting rare-earth-doped nanoparticles (RENPs) capable of delivering genetic cargo and of real-time response monitoring. We showed that the cationic coating of RENPs with branched polyethylenimine (PEI) does not have a significant impact on cellular toxicity, which can be further reduced by selectively modifying the surface characteristics of the PEI coating using counter-ions and expanding their potential applications in photothermal therapy.

View Article and Find Full Text PDF

Rare-earth-doped nanocomposites have appealing optical properties for use as biomedical contrast agents, but few systems exist for imaging these materials. We describe the design and characterization of (i) a preclinical system for whole animal in vivo imaging and (ii) an integrated optical coherence tomography/confocal microscopy system for high-resolution imaging of ex vivo tissues. We demonstrate these systems by administering erbium-doped nanocomposites to a murine model of metastatic breast cancer.

View Article and Find Full Text PDF

The understanding of cuspal deflection and volumetric shrinkage of resin composites is necessary to assess and improve the placement techniques of resin-based materials. The aim of this study was to investigate the cuspal deflection and its relationship with volumetric polymerization shrinkage of different bulk-fill resin composites. The investigation was conducted using non-contact phase microscopy and micro-computed tomography.

View Article and Find Full Text PDF

Background: Developmental and reproductive toxicology (DART) testing represents an expensive and time-consuming stage in determining the toxicological profile of new chemical entities. Within DART studies, morphological evaluation of fetal skeletons for developmental abnormalities typically requires 7 to 14 days. Current processing techniques involve digestion of soft tissue using a strong base (KOH), followed by qualitative assessment of the remaining skeletal tissue by a fetal morphologist.

View Article and Find Full Text PDF

Several new methods have been used to non-destructively evaluate the mechanical properties of materials and tissues including magnetic resonance elastography, ultrasound elastography, optical coherence elastography, and various forms of vibrational analysis. One of the limitations of using these methods is the need to establish a relationship between the modulus measured using each new technique and moduli measured using well-established techniques such as constant rate-of-strain and incremental stress-strain curves. In addition, there are no available methods for analyzing the mechanical properties of the individual components of multi-component materials.

View Article and Find Full Text PDF

The identification and molecular profiling of early metastases remains a major challenge in cancer diagnostics and therapy. Most in vivo imaging methods fail to detect small cancerous lesions, a problem that is compounded by the distinct physical and biological barriers associated with different metastatic niches. Here, we show that intravenously injected rare-earth-doped albumin-encapsulated nanoparticles emitting short-wave infrared light (SWIR) can detect targeted metastatic lesions in vivo, allowing for the longitudinal tracking of multi-organ metastases.

View Article and Find Full Text PDF

Numerous tests have been used to elucidate mechanical properties of tissues and implants including tensile, compressive, shear, hydrostatic compression, and three-point bending in one or more axial directions. The development of a nondestructive test that could be applied to tissues and materials in vivo would promote the analysis of tissue pathology as well as the design of implant materials. The purpose of this article is to present the results of preliminary studies demonstrating nondestructive in vitro testing of a tissue model, decellularized human dermis, and a model implant, silicone rubber, using a combination of optical coherence tomography (OCT), and vibrational analysis.

View Article and Find Full Text PDF

Objective: To evaluate the safety, tolerability, and pharmacokinetics of sumatriptan delivered by the iontophoretic transdermal system (TDS) in adolescent patients.

Background: Since nausea can be a prominent and early symptom of migraine, nonoral treatment options are often required. Sumatriptan iontophoretic TDS is approved for the acute treatment of migraine in adults.

View Article and Find Full Text PDF