Publications by authors named "Mark Parcells"

RNA viruses continue to remain a threat for potential pandemics due to their rapid evolution. Potentiating host antiviral pathways to prevent or limit viral infections is a promising strategy. Thus, by testing a library of innate immune agonists targeting pathogen recognition receptors, we observe that Toll-like receptor 3 (TLR3), stimulator of interferon genes (STING), TLR8, and Dectin-1 ligands inhibit arboviruses, Chikungunya virus (CHIKV), West Nile virus, and Zika virus to varying degrees.

View Article and Find Full Text PDF

Marek's disease virus (MDV), an Alphaherpesvirus belonging to the genus Mardivirus, causes T cell lymphomas in chickens and remains one of the greatest threats to poultry production worldwide [...

View Article and Find Full Text PDF

RNA viruses continue to remain a clear and present threat for potential pandemics due to their rapid evolution. To mitigate their impact, we urgently require antiviral agents that can inhibit multiple families of disease-causing viruses, such as arthropod-borne and respiratory pathogens. Potentiating host antiviral pathways can prevent or limit viral infections before escalating into a major outbreak.

View Article and Find Full Text PDF
Article Synopsis
  • Marek's disease virus (MDV) causes serious health issues in chickens, with increasing virulence over the decades despite vaccination efforts.
  • The study explores two genetic variations in a protein called Meq, specifically an insertion (L-Meq) and a deletion (S-Meq), to determine their impact on the virus's ability to cause disease.
  • Findings show that the L-Meq version increases both the activity of the Meq protein and the virus's pathogenicity, while S-Meq decreases pathogenicity, highlighting the complex role of Meq in MDV virulence evolution.
View Article and Find Full Text PDF

Zika virus (ZIKV) is a mosquito-borne flavivirus that became widely recognized due to the epidemic in Brazil in 2015. Since then, there has been nearly a 20-fold increase in the incidence of microcephaly and birth defects seen among women giving birth in Brazil, leading the Centers for Disease Control and Prevention (CDC) to officially declare a causal link between prenatal ZIKV infection and the serious brain abnormalities seen in affected infants. Here, we used a unique rat model of prenatal ZIKV infection to study three possible long-term outcomes of congenital ZIKV infection: (1) behavior, (2) cell proliferation, survival, and differentiation in the brain, and (3) immune responses later in life.

View Article and Find Full Text PDF

Since Zika virus (ZIKV) first emerged as a public health concern in 2015, our ability to identify and track the long-term neurological sequelae of prenatal Zika virus (ZIKV) infection in humans has been limited. Our lab has developed a rat model of maternal ZIKV infection with associated vertical transmission to the fetus that results in significant brain malformations in the neonatal offspring. Here, we use this model in conjunction with longitudinal magnetic resonance imaging (MRI) to expand our understanding of the long-term neurological consequences of prenatal ZIKV infection in order to identify characteristic neurodevelopmental changes and track them across time.

View Article and Find Full Text PDF

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein mediates viral entry into cells expressing angiotensin-converting enzyme 2 (ACE2). The S protein engages ACE2 through its receptor-binding domain (RBD), an independently folded 197-amino-acid fragment of the 1,273-amino-acid S-protein protomer. The RBD is the primary SARS-CoV-2 neutralizing epitope and a critical target of any SARS-CoV-2 vaccine.

View Article and Find Full Text PDF

SARS-CoV-2 has currently precipitated the COVID-19 global health crisis. We developed a medium-throughput drug-screening system and identified a small-molecule library of 34 of 430 protein kinase inhibitors that were capable of inhibiting the SARS-CoV-2 cytopathic effect in human epithelial cells. These drug inhibitors are in various stages of clinical trials.

View Article and Find Full Text PDF

Marek's disease (MD) is an alphaherpesvirus (Marek's disease virus, MDV)-induced pathology of chickens associated with paralysis, immunosuppression, neurological signs, and T-cell lymphomas. MD is controlled in poultry production via live attenuated vaccines. The purpose of the current study was to compare methods for precipitating exosomes from vaccinated and protected chicken sera (VEX) and tumor-bearing chicken sera (TEX) for biomarker analysis of vaccine-induced protection and MD lymphomas respectively.

View Article and Find Full Text PDF

Modified-live herpesvirus vaccines are widely used in humans and animals, but field strains can emerge that have a higher virulence and break vaccinal protection. Since the introduction of the first vaccine in the 1970s, Marek's disease virus overcame the vaccine barrier by the acquisition of numerous genomic mutations. However, the evolutionary adaptations in the herpesvirus genome responsible for the vaccine breaks have remained elusive.

View Article and Find Full Text PDF

The SARS-coronavirus 2 (SARS-CoV-2) spike (S) protein mediates viral entry into cells expressing the angiotensin-converting enzyme 2 (ACE2). The S protein engages ACE2 through its receptor-binding domain (RBD), an independently folded 197-amino acid fragment of the 1273-amino acid S-protein protomer. The RBD is the primary SARS-CoV-2 neutralizing epitope and a critical target of any SARS-CoV-2 vaccine.

View Article and Find Full Text PDF

Marek's disease (MD) is a complex pathology of chickens caused by MD virus (MDV) 1 and is observed as paralysis, immune suppression, neurologic signs, and the rapid formation of T-cell lymphomas. The incidence of MD in commercial broilers is largely controlled via vaccination, either or at hatch with live attenuated vaccines, i.e.

View Article and Find Full Text PDF

Vaccines play a crucial role in the protection of animals and humans from deadly pathogens. The first vaccine that also protected against cancer was developed against the highly oncogenic herpesvirus Marek's disease virus (MDV). MDV infects chickens and causes severe immunosuppression, neurological signs, and fatal lymphomas, a process that requires the viral oncogene, The most frequently used Marek's disease vaccine is the live-attenuated CVI988/Rispens (CVI) strain, which efficiently protects chickens and prevents tumorigenesis.

View Article and Find Full Text PDF

Zika virus (ZIKV) is a mosquito-borne flavivirus associated with microcephaly and other neurological disorders in infants born to infected mothers. Despite being declared an international emergency by the World Health Organization, very little is known about the mechanisms of ZIKV pathogenesis or the long-term consequences of maternal ZIKV infection in the affected offspring, largely due to the lack of appropriate rodent models. To address this issue, our lab has developed a working model of prenatal ZIKV infection in rats.

View Article and Find Full Text PDF

The most notable effect of prenatal Zika virus (ZIKV) infection is severe microcephaly. ZIKV has a selective tropism for neural progenitor cells; however, it is not clear what role the immune cells of the brain, microglia, may have in mitigating or exacerbating neuronal cell death following ZIKV infection. We cultured hippocampal and cortical neural cells from neonatal rat pups and infected them with ZIKV at various multiplicities of infection (MOI).

View Article and Find Full Text PDF

Marek's disease virus (MDV) is the causative agent of Marek's disease (MD), a complex pathology of chickens characterized by paralysis, immunosuppression, and T-cell lymphomagenesis. MD is controlled in poultry production via vaccines administered or at hatch, and these confer protection against lymphoma formation, but not superinfection by MDV field strains. Despite vaccine-induced humoral and cell-mediated immune responses, mechanisms eliciting systemic protection remain unclear.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) is a collective term used to refer microparticles, exosomes, and apoptotic bodies produced by a variety of cells and released into interstitial spaces and bodily fluids. Serum exosomes can serve as invaluable biomarkers, containing m/miRNAs, lipids, and proteins, indicative of various conditions. There are currently limited studies on the characterization and mutual consensus of biomarker profiles of serum exosomes purified by different methods.

View Article and Find Full Text PDF

The Figure 3 in the original version of this article was incorrectly published. In this article the top panel of Figure 3 that describes the amino acid sequence alignment is now added. The original article has been corrected.

View Article and Find Full Text PDF

Marek's disease (MD) is a pathology of chickens associated with paralysis, immune suppression, and the rapid formation of T-cell lymphomas. MD is caused by the herpesvirus, Marek's disease virus (MDV). We examined endoplasmic reticulum (ER) stress and the activation of unfolded protein response (UPR) pathways during MDV infection of cells in culture and lymphocytes in vivo.

View Article and Find Full Text PDF

The function of the chicken's major histocompatibility complex (MHC or B complex) class I major (BF2) and minor (BF1) glycoproteins is compared for their expression, ability to present viral antigens to cytotoxic T lymphocytes (CTLs), and interaction with natural killer (NK) cells. MHC-restricted CTLs recognized virus antigen in the context of the BF2*21 major glycoprotein but not the BF1*21 minor glycoprotein. Marek's disease virus (MDV), a large DNA virus known to reduce the cell surface expression of class I glycoprotein, reduced the expression of BF2 glycoprotein while BF1glycoprotein expressions are remained as no change or slight increase.

View Article and Find Full Text PDF

Marek's disease (MD), caused by Marek's disease virus (MDV), a poultry-borne alphaherpesvirus, is a devastating disease of poultry causing an estimated annual loss of one billion dollars to poultry producers, worldwide. Despite decades of control through vaccination, MDV field strains continue to emerge having increased virulence. The evolutionary mechanism driving the emergence of this continuum of strains to increased MDV virulence, however, remains largely enigmatic.

View Article and Find Full Text PDF

Quantitative RT-PCR (qRT-PCR) is widely used in the study of relative gene expression in general, and has been used in the field of Marek's disease (MD) research to measure transcriptional responses to infection and/or vaccination. Studies in the past have either employed cellular β-actin (BACT) or glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as internal reference genes, although the stability of their expression in the context of Marek's disease virus (MDV) infection has never been investigated. In the present study, we compared the stability of five reference genes (BACT, 28S RNA, 18S RNA, GAPDH, Peptidyl-prolyl-isomerase B [PPIB], a.

View Article and Find Full Text PDF

Marek's disease (MD) is a highly transmissible, herpesvirus-associated malignancy of chickens and turkeys caused by Marek's disease virus (MDV). MD is currently controlled through the use of nonsterilizing vaccines composed of antigenically related, apathogenic herpesviruses Mardivirus 2 (MDV-2), Meleagrid herpesvirus 1 (herpesvirus of turkeys, HVT), or attenuated MDV-1 strain CVI988 (Rispens). Since the mid-1960s, field strains of MDV have increased in virulence, due, in part, to the widespread use of vaccines since the early 1970s.

View Article and Find Full Text PDF

Marek's disease (MD) is a highly contagious viral disease of chickens (Gallus gallus domesticus) caused by MD virus (MDV), characterized by paralysis, neurologic signs, and the rapid onset of T-cell lymphomas. MDV-induced T-cell transformation requires a basic leucine zipper protein called Marek's EcoRI-Q-encoded protein (Meq). We have identified mutations in the coding sequence of Meq that correlated with virus pathotype (virulent, very virulent, and very virulent plus).

View Article and Find Full Text PDF

Fecal specimens, including swabs and litter extracts, collected from chickens, domestic ducks, turkeys, and Canadian geese were tested using degenerate primers targeting regions encoding for conserved amino acid motifs (YGDD and DY(T/S)(R/K/G)WDST) in calicivirus RNA-dependent RNA polymerases. Similar motifs are also present in other RNA viruses. Two fecal specimens and 18 litter extracts collected from chickens and turkeys yielded RT-PCR products.

View Article and Find Full Text PDF