Background And Purpose: Sacubitril/valsartan (Sac/val) is more effective than valsartan in lowering BP and mortality in patients with heart failure. Here, we proposed that Sac/val treatment would be more effective in preventing pathological vascular remodelling in 129X1/SvJ (129X1), than in C57BL/6J (B6) inbred mice.
Experimental Approach: Sac/val (60 mg·kg ·day ) and valsartan (27 mg·kg ·day ) were given as prophylactic or therapeutic treatments, to 129X1 or B6 mice with carotid artery ligation for 14 days.
CypA (cyclophilin A) is a ubiquitous and highly conserved protein with peptidyl prolyl isomerase activity. Because of its highly abundant level in the cytoplasm, most studies have focused on the roles of CypA as an intracellular protein. However, emerging evidence suggests an important role for extracellular CypA in the pathogenesis of several diseases through receptor (CD147 or other)-mediated autocrine and paracrine signaling pathways.
View Article and Find Full Text PDFBiochem Biophys Res Commun
September 2016
Studies examining the relationship between cellular sortilin and VLDL-B100 secretion demonstrate inconsistent results. Current studies explore the possibility that discrepancies may be related to insulin sensitivity. McArdle RH7777 cells (McA cells) cultured under serum enriched conditions lose sensitivity to insulin.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
February 2014
Objective: Recent evidence suggests G-protein-coupled receptor-2-interacting protein-1 (GIT1) overexpression in several human metastatic tumors, including breast, lung, and prostate. Tumor metastasis is associated with an increase in angiogenesis. We have showed previously that GIT1 is required for postnatal angiogenesis during lung development.
View Article and Find Full Text PDFApoB mRNA editing involves site-specific deamination of cytidine 6666 producing an in-frame translation stop codon. Editing minimally requires APOBEC-1 and APOBEC-1 complementation factor (ACF). Metabolic stimulation of apoB mRNA editing in hepatocytes is associated with serine phosphorylation of ACF localized to editing competent, nuclear 27S editosomes.
View Article and Find Full Text PDFBiochem Biophys Res Commun
November 2006
Human APOBEC3G (hA3G) is a member of the APOBEC-1 related protein (ARP) family of cytidine deaminases. hA3G functions as a natural defense against endogenous retrotransposons and a multitude of retroviruses, most notably human immunodeficiency virus type 1 (HIV-1). Nothing is known about the cellular function of hA3G, however, upon HIV-1 infection hA3G functions as an antiviral factor by mutating viral single-stranded DNA during reverse transcription.
View Article and Find Full Text PDFApolipoprotein B (apoB) mRNA editing is a nuclear event that minimally requires the RNA substrate, APOBEC-1 and APOBEC-1 Complementation Factor (ACF). The co-localization of these macro-molecules within the nucleus and the modulation of hepatic apoB mRNA editing activity have been described following a variety of metabolic perturbations, but the mechanism that regulates editosome assembly is unknown. APOBEC-1 was effectively co-immunoprecipitated with ACF from nuclear, but not cytoplasmic extracts.
View Article and Find Full Text PDFIn mammals, activation-induced deaminase (AID) initiates somatic hypermutation (SHM) and class switch recombination (CSR) of Ig genes. SHM and CSR activities require separate regions within AID. A chromosome region maintenance 1 (CRM1)-dependent nuclear export signal (NES) at the AID C terminus is necessary for CSR, and has been suggested to associate with CSR-specific cofactors.
View Article and Find Full Text PDFWe have previously reported a positive correlation between the expression of BHMT (betaine-homocysteine S-methyltransferase) and ApoB (apolipoprotein B) in rat hepatoma McA (McArdle RH-7777) cells [Sowden, Collins, Smith, Garrow, Sparks and Sparks (1999) Biochem. J. 341, 639-645].
View Article and Find Full Text PDFActivation-induced deaminase (AID) uses base deamination for class-switch recombination and somatic hypermutation and is related to the mammalian RNA-editing enzyme apolipoprotein B editing catalytic subunit 1 (APOBEC-1). CDD1 is a yeast ortholog of APOBEC-1 that exhibits cytidine deaminase and RNA-editing activity. Here, we present the crystal structure of CDD1 at 2.
View Article and Find Full Text PDFActivation-induced deaminase (AID) is required for class switch recombination and somatic hypermutation in immunoglobulin genes. Although the preponderance of evidence suggests that AID functions by deaminating deoxycytidine in DNA, the question remains whether it can also deaminate cytidine in mRNA, as originally proposed based on its homology to RNA-editing enzymes. Recently, the biological relevance of assaying mammalian enzymes for DNA deaminase activity using Escherichia coli DNA as a reporter has been questioned, representing another round in the ongoing debate.
View Article and Find Full Text PDFTwo novel mRNA transcripts have been identified that result from species- and tissue-specific, alternative polyadenylation and splicing of the pre-mRNA encoding the apolipoprotein B (apoB) editing catalytic subunit 1 (APOBEC-1) complementation factor (ACF) family of related proteins. The alternatively processed mRNAs encode 43- and 45-kDa proteins that are components of the previously identified p44 cluster of apoB RNA binding, editosomal proteins. Recombinant ACF45 displaced ACF64 and ACF43 in mooring sequence RNA binding but did not demonstrate strong binding to APOBEC-1.
View Article and Find Full Text PDFBACKGROUND: One of the major cellular serine/threonine protein phosphatases is protein phosphatase type 1 (PP1). Studies employing many eukaryotic systems all point to a crucial role for PP1 activity in controlling cell cycle progression. One physiological substrate for PP1 appears to be the product of the retinoblastoma susceptibility gene (pRB), a demonstrated tumor suppressor.
View Article and Find Full Text PDFAlteration of mRNA sequence through base modification mRNA editing frequently generates protein diversity. Several proteins have been identified as being similar to C-to-U mRNA editing enzymes based on their structural domains and the occurrence of a catalytic domain characteristic of cytidine deaminases. In light of the hypothesis that these proteins might represent novel mRNA editing systems that could affect proteome diversity, we consider their structure, expression and relevance to biomedically significant processes or pathologies.
View Article and Find Full Text PDFRecombinant mammalian proteins expressed in E. coli can be difficult to purify in high yield in a soluble and functional form. Various techniques have been described to prevent proteolysis of expressed proteins and/or their sequestering as insoluble aggregates within inclusion bodies.
View Article and Find Full Text PDFApolipoprotein B mRNA cytidine to uridine editing requires the assembly of a multiprotein editosome comprised minimally of the catalytic subunit, apolipoprotein B mRNA editing catalytic subunit 1 (APOBEC-1), and an RNA-binding protein, APOBEC-1 complementation factor (ACF). A rat homolog has been cloned with 93.5% identity to human ACF (huACF).
View Article and Find Full Text PDFApolipoprotein B (apoB) mRNA editing involves site-specific deamination of cytidine to form uridine, resulting in the production of an in-frame stop codon. Protein translated from edited mRNA is associated with a reduced risk of atherosclerosis, and hence the protein factors that regulate hepatic apoB mRNA editing are of interest. A human protein essential for apoB mRNA editing and an eight-amino acid-longer variant of no known function have been recently cloned.
View Article and Find Full Text PDF