Publications by authors named "Mark P Hogarth"

Although anti-DNA antibodies have been decisively linked to the pathogenesis of lupus nephritis, the mechanisms have not been conclusively determined. Recently, we reported that anti-DNA antibodies may contribute to kidney damage by upregulation of proinflammatory genes in mesangial cells (MC), a process involving both Fc receptor-dependent and independent pathways. In investigating the mechanism by which pathogenic anti-DNA antibodies modulate gene expression in MC, we found that the pathogenic anti-DNA antibody 1A3F bound to high mobility group binding protein 1 (HMGB1), an endogenous ligand for TLR2/4 and RAGE (receptor for advanced glycation end products).

View Article and Find Full Text PDF

Objective: Lupus-associated IgG anti-double-stranded DNA antibodies are thought to be pathogenic in the kidney due to cross-reaction with glomerular antigens, leading subsequently to immune complex formation in situ and complement activation. We undertook this study to determine if pathogenic anti-DNA antibodies may also contribute to renal damage by directly influencing mesangial gene expression.

Methods: Complementary DNA microarray gene profiling was performed in primary mesangial cells (derived from lupus-prone MRL/lpr mice) treated with pathogenic, noncomplexed anti-DNA antibodies.

View Article and Find Full Text PDF

The substitution of plasmatic anti-RhD polyclonal antibodies by a monoclonal antibody (mAb) for preventing the hemolytic disease of the newborn (HDN) is an important issue due to supply and safety concerns. Since it has been suggested that FcgammaR are involved in the prevention of HDN, the in vitro functional properties of two anti-RhD mAbs differing through their glycosylation profiles were compared using FcgammaR-based assays to select a candidate mAb. T125(YB2/0), a low fucosylated antibody, bound strongly to both activating FcgammaRIII and inhibitory FcgammaRII, as opposed to its highly fucosylated counterpart.

View Article and Find Full Text PDF

Binding of intact Ag is a hallmark of Ag-specific B cells. Apart from B cells, a small number of non-B cells can bind Ag with comparable efficacy as B cells and are found in the peripheral blood, spleen, and bone marrow of mice. This population has been observed for a long time and recently named "Ag-capturing cells.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionop90i1482c292oat19kko9kecghjl9rq): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once