Background: Kidney fibrosis is a hallmark of chronic kidney disease (CKD) and compromises the viability of transplanted human bone marrow-derived mesenchymal stromal cells (BM-MSCs). Hence, BM-MSCs were genetically-engineered to express the anti-fibrotic and renoprotective hormone, human relaxin-2 (RLX) and green fluorescent protein (BM-MSCs-eRLX + GFP), which enabled BM-MSCs-eRLX + GFP delivery via a single intravenous injection.
Methods: BM-MSCs were lentiviral-transduced with human relaxin-2 cDNA and GFP, under a eukaryotic translation elongation factor-1α promoter (BM-MSCs-eRLX + GFP) or GFP alone (BM-MSCs-eGFP).
β-Peptides have great potential as novel biomaterials and therapeutic agents, due to their unique ability to self-assemble into low dimensional nanostructures, and their resistance to enzymatic degradation in vivo. However, the self-assembly mechanisms of β-peptides, which possess increased flexibility due to the extra backbone methylene groups present within the constituent β-amino acids, are not well understood due to inherent difficulties of observing their bottom-up growth pathway experimentally. A computational approach is presented for the bottom-up modelling of the self-assembled lipidated β-peptides, from monomers, to oligomers, to supramolecular low-dimensional nanostructures, in all-atom detail.
View Article and Find Full Text PDFSmall tripeptides composed entirely of β-amino acids have been shown to self-assemble into fibres following acylation of the N-terminus. Given the use of Fmoc as a strategy to initiate self-assembly in α-peptides, we hypothesized that the acyl cap can be replaced by an Fmoc without perturbation to the self-assembly and enable simpler synthetic protocols. We therefore replaced the -acyl cap for an Fmoc group and herein we show that these Fmoc-protected β-peptides produce regular spherical particles, rather than fibrous structures, that are stable and capable of encapsulating cargo.
View Article and Find Full Text PDFSelf-assembling lipopeptide hydrogels have been widely developed for the delivery of therapeutics due to their rapid gelation, injectability, and highly controlled physicochemical properties. Lipopeptides are also known for their membrane-associating and cell penetrating properties, which may impact on their application in cell-encapsulation. Self-assembling lipidated-β-peptide materials developed in our laboratory have previously been used in cell culture as 2D substrates, thus as a continuation of this work we aimed to encapsulate cells in 3D by forming a hydrogel.
View Article and Find Full Text PDFDetermining the porosity of hydrogels is an important component of material characterisation. While scanning electron microscopy (SEM) is a widely used method to study hydrogel nanoarchitecture, it is well-established that SEM sample preparation methods can alter the structure of hydrogels. Herein we describe the impact of sample preparation on the SEM analysis of self-assembling β-peptide hydrogels.
View Article and Find Full Text PDFA synthetic strategy for conjugating small molecules and peptide-based therapeutics, via a cleavable ester bond, to a lipidated β-tripeptide is presented. The drug-loaded β-peptide was successfully co-assembled with a functionally inert lipidated β-tripeptide to form a hydrogel. Quantitative release of lactose from the hydrogel, by the action of serum esterases, is demonstrated over 28 days.
View Article and Find Full Text PDFThe increasing resistance of pathogenic microbes to antimicrobials and the shortage of antibiotic drug discovery programs threaten the clinical use of antibiotics. This threat calls for the development of new methods for control of drug-resistant microbial pathogens. We have designed, synthesised and characterised an antimicrobial material formed the self-assembly of a population of two distinct β-peptide monomers, a lipidated tri-β-peptide (β-peptide) and a novel β-peptide conjugated to a glycopeptide antibiotic, vancomycin.
View Article and Find Full Text PDFGlioblastoma multiforme (GBM) is the most common and aggressive primary malignant brain tumor. Maximal surgical resection followed by radiotherapy and concomitant chemotherapy with temozolomide remains the first-line therapy, prolonging the survival of patients by an average of only 2.5 months.
View Article and Find Full Text PDFβ-peptides consisting exclusively of β-amino acids adopt a variety of non-natural helical structures and can self-assemble into well-defined hierarchical structures by axial head-to-tail self-assembly resulting in fibrous materials of varying sizes and shapes. To allow control of fiber morphology, a lipid moiety was introduced within a tri-β-peptide sequence at each of the three amino acid positions and the N-terminus to gain finer control over the lateral assembly of fibers. Depending on the position of the lipid, the self-assembled structures formed either twisted ribbon-like fibers or distinctive multilaminar nanobelts.
View Article and Find Full Text PDFRecently, we designed a group of peptides by sequential substitution of the naturally occurring α-amino acid throughout the Ang III peptide sequence with the corresponding β-amino acid. β-Amino acid substitution at the proline residue of Ang III (β-Pro7-Ang III) resulted in a highly selective AT2R ligand, demonstrating remarkable selectivity for the AT2R in both binding and functional studies. To provide additional functional evidence for the suitability of β-Pro7 Ang III as a novel AT2R agonist, we tested effects of acute systemic administration of β-Pro7-Ang III on renal hemodynamic and excretory function in anesthetized normotensive male and female rats.
View Article and Find Full Text PDFNeural stem cells, which are confined in localised niches are unable to repair large brain lesions because of an inability to migrate long distances and engraft. To overcome these problems, previous research has demonstrated the use of biomaterial implants to redirect increased numbers of endogenous neural stem cell populations. However, the fate of the diverted neural stem cells and their progeny remains unknown.
View Article and Find Full Text PDFFunctional deficits due to neuronal loss are a common theme across multiple neuropathologies, including traumatic brain injury (TBI). Apart from mitigating cell death, another approach to treating brain injuries involves re-establishing the neural circuitry at the lesion site by utilizing exogeneous and/or endogenous stem cells to achieve functional recovery. While there has been limited success, the emergence of new bioactive matrices that promote neural repair introduces new perspectives on the development of regenerative therapies for TBI.
View Article and Find Full Text PDFPeptides comprised entirely of β-amino acids, commonly referred to as β-foldamers, have been shown to self-assemble into a range of materials. Previously, β-foldamers have been functionalised via various side chain chemistries to introduce function to these materials without perturbation of the self-assembly motif. Here, we show that insertion of both rigid and flexible molecules into the backbone structure of the β-foldamer did not disturb the self-assembly, provided that the molecule is positioned between two β-tripeptides.
View Article and Find Full Text PDFSelf-assembly is the spontaneous organization of small components into higher-order structures facilitated by the collective balance of non-covalent interactions. Peptide-based self-assembly systems exploit the ability of peptides to adopt distinct secondary structures and have been used to produce a range of well-defined nanostructures, such as nanotubes, nanofibres, nanoribbons, nanospheres, nanotapes, and nanorods. While most of these systems involve self-assembly of α-peptides, more recently β-peptides have also been reported to undergo supramolecular self-assembly, and have been used to produce materials-such as hydrogels-that are tailored for applications in tissue engineering, cell culture and drug delivery.
View Article and Find Full Text PDFβ-peptides uniquely form shear thinning hydrogels which are proteolytically stable and biocompatible. Herein we describe the synthesis, material and optical characterization of a new class of fluorescently labeled hydrogelators based on a helical -acetylated β-peptide backbone. The resulting hydrogels were analyzed using fluorescence microscopy to confirm successful incorporation of the fluorophore within the fiber matrix without compromising the β-peptide self-assembly.
View Article and Find Full Text PDFChronic kidney disease (CKD) is a major and growing public health concern with increasing incidence and prevalence worldwide. The therapeutic potential of stem cell therapy, including mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs) holds great promise for treatment of CKD. However, there are significant bottlenecks in the clinical translation due to the reduced number of transplanted cells and the duration of their presence at the site of tissue damage.
View Article and Find Full Text PDFPeptide self-assembly represents a powerful bottom-up approach to the fabrication of nanomaterials. β-Peptides are non-natural peptides composed entirely of β-amino acids, which have an extra methylene in the backbone, and we reported fibers derived from the self-assembly of β-peptides that adopt 14-helical structures. β-Peptide assemblies represent a class of stable nanomaterials that can be used to generate bio- and magneto-responsive materials with proteolytic stability.
View Article and Find Full Text PDFThe molecular analysis of biomolecular-membrane interactions is central to understanding most cellular systems but has emerged as a complex technical challenge given the complexities of membrane structure and composition across all living cells. We present a review of the application of surface plasmon resonance and dual polarization interferometry-based biosensors to the study of biomembrane-based systems using both planar mono- or bilayers or liposomes. We first describe the optical principals and instrumentation of surface plasmon resonance, including both linear and extraordinary transmission modes and dual polarization interferometry.
View Article and Find Full Text PDFDelivery across the cell membrane is of critical importance for the development of therapeutics targeting intracellular proteins. The use of cell-penetrating peptides (CPPs), such as Penetratin (P16), has facilitated the delivery of otherwise cell-impermeable molecules allowing them to carry out their biological function. A truncated form of Penetratin (RRMKWKK) has been previously described as the minimal Penetratin sequence that is required for translocation across the cell membrane.
View Article and Find Full Text PDFβ-Amino acids are being increasingly used in the design of bioactive ligands and more recently in the generation of novel biomaterials. Peptides containing either individual β-amino acid substitutions or peptides comprised entirely of β-amino acids, display unique properties in terms of their structural and/or chemical characteristics. β-Peptides form well-defined secondary structures that exhibit different geometries compared to the corresponding α-peptides.
View Article and Find Full Text PDFThe design of potent and specific peptide inhibitors to therapeutic targets is of enormous utility for both proof-of-concept studies and for the development of potential new therapeutics. Grb7 is a key signaling molecule in the progression of HER2 positive and triple negative breast cancers. Here we report the crystal structure of a stapled bicyclic peptide inhibitor G7-B1 in complex with the Grb7-SH2 domain.
View Article and Find Full Text PDFWe have described a new class of hydrogelator based on helical β(3)-peptides carrying a bioactive payload. The β(3)-peptides self-assemble in aqueous solution to form a nanofibrous mesh resulting in a stable hydrogel. The simple design provides the versatility for attaching different functional payloads to the β(3)-peptide scaffold to develop new materials.
View Article and Find Full Text PDFA popular strategy to control cellular growth and differentiation is the employment of self-assembling peptides as biomaterials. In this study we decorated ultrashort helical N-acetylated β-tripeptides with cell adhesion signals IKVAV and RGD, which spontaneously self-assemble to give nanofibres with multiple signals, and form a bioscaffold that supports the growth of cells.
View Article and Find Full Text PDFPeptides comprised entirely of β-amino acids, or β-peptides, have attracted substantial interest over the past 25 years due to their unique structural and chemical characteristics. β-Peptides form well-defined secondary structures that exhibit different geometries compared with their α-peptide counterparts, giving rise to their foldamer classification. β-Peptide foldamers can be functionalized easily and are metabolically stable and, together with the predictable side-chain topography, have led to the design of a growing number of bioactive β-peptides with a range of biological targets.
View Article and Find Full Text PDF