Publications by authors named "Mark P Beenhakker"

Background: We aimed to further validate our previously published animal model for delirium by testing the hypothesis that in aged mice, Anesthesia, Surgery and simulated ICU conditions (ASI) induce sleep fragmentation, electroencephalographic (EEG) slowing, and circadian disarray consistent with intensive care unit (ICU) patients with delirium.

Methods: A total of 41 mice were used. Mice were implanted with EEG electrodes and randomized to ASI or control groups.

View Article and Find Full Text PDF

Background: Ion channel mutations in calcium regulating genes strongly associate with AngII (angiotensin II)-independent aldosterone production. Here, we used an established mouse model of in vivo aldosterone autonomy, -driven deletion of TWIK-related acid-sensitive potassium channels (TASK-1 and TASK-3, termed zona glomerulosa [zG]-TASK-loss-of-function), and selective pharmacological TASK channel inhibition to determine whether channel dysfunction in native, electrically excitable zG cell rosette-assemblies: (1) produces spontaneous calcium oscillatory activity and (2) is sufficient to drive substantial aldosterone autonomy.

Methods: We imaged calcium activity in adrenal slices expressing a zG-specific calcium reporter (GCaMP3), an in vitro experimental approach that preserves the native rosette assembly and removes potentially confounding extra-adrenal contributions.

View Article and Find Full Text PDF

Metabolism regulates neuronal activity and modulates the occurrence of epileptic seizures. Here, using two rodent models of absence epilepsy, we show that hypoglycaemia increases the occurrence of spike-wave seizures. We then show that selectively disrupting glycolysis in the thalamus, a structure implicated in absence epilepsy, is sufficient to increase spike-wave seizures.

View Article and Find Full Text PDF

Hyperventilation reliably provokes seizures in patients diagnosed with absence epilepsy. Despite this predictable patient response, the mechanisms that enable hyperventilation to powerfully activate absence seizure-generating circuits remain entirely unknown. By utilizing gas exchange manipulations and optogenetics in the WAG/Rij rat, an established rodent model of absence epilepsy, we demonstrate that absence seizures are highly sensitive to arterial carbon dioxide, suggesting that seizure-generating circuits are sensitive to pH.

View Article and Find Full Text PDF

CILK1 (ciliogenesis associated kinase 1)/ICK (intestinal cell kinase) is a highly conserved protein kinase that regulates primary cilia structure and function. mutations cause a wide spectrum of human diseases collectively called ciliopathies. While several heterozygous variants have been recently linked to juvenile myoclonic epilepsy (JME), it remains unclear whether these mutations cause seizures.

View Article and Find Full Text PDF

Absence seizures result from 3 to 5 Hz generalized thalamocortical oscillations that depend on highly regulated inhibitory neurotransmission in the thalamus. Efficient reuptake of the inhibitory neurotransmitter GABA is essential, and reuptake failure worsens human seizures. Here, we show that blocking GABA transporters (GATs) in acute rat brain slices containing key parts of the thalamocortical seizure network modulates epileptiform activity.

View Article and Find Full Text PDF

Aldosterone-producing zona glomerulosa (zG) cells of the adrenal gland arrange in distinct multi-cellular rosettes that provide a structural framework for adrenal cortex morphogenesis and plasticity. Whether this cyto-architecture also plays functional roles in signaling remains unexplored. To determine if structure informs function, we generated mice with zG-specific expression of GCaMP3 and imaged zG cells within their native rosette structure.

View Article and Find Full Text PDF
Cracklin' Fish Brains.

Epilepsy Curr

January 2019

Whole-Brain Neuronal Activity Displays Crackling Noise Dynamics Ponce-Alvarez A, Jouary A, Privat M, Deco G, Sumbre G. Neuron. 2018;100(6):1446-1459.

View Article and Find Full Text PDF

Background: Previous studies suggest that rapid eye movement sleep rebound and disruption of rapid eye movement sleep architecture occur during the first 24 h after general anesthesia with volatile anesthetics in adult rats. However, it is unknown whether rapid eye movement sleep alterations persist beyond the anesthetic recovery phase in neonatal rats. This study tested the hypothesis that rapid eye movement sleep disturbances would be present in adolescent rats treated with anesthesia on postnatal day 7.

View Article and Find Full Text PDF

The prefrontal cortex controls food reward seeking and ingestion, playing important roles in directing attention, regulating motivation towards reward pursuit, and the assignment of reward salience and value. The cell types that mediate these behavioral functions, however, are not well described. We report here that optogenetic activation of vasoactive peptide expressing (VIP) interneurons in both the infralimbic (IL) and prelimbic (PL) divisions of the medial prefrontal cortex in mice is sufficient to reduce acute, binge-like intake of high calorie palatable food in the absence of any effect on low calorie rodent chow intake in the sated animal.

View Article and Find Full Text PDF

Induced pluripotent stem cell (iPSC)-derived neurons permit the study of neurogenesis and neurological disease in a human setting. However, the electrophysiological properties of iPSC-derived neurons are consistent with those observed in immature cortical neurons, including a high membrane resistance depolarized resting membrane potential and immature firing properties, limiting their use in modeling neuronal activity in adult cells. Based on the proven association between inhibiting rho kinase (ROCK) and increased neurite complexity, we seek to determine if short-term ROCK inhibition during the first 1-2 weeks of differentiation would increase morphological complexity and electrophysiological maturity after several weeks of differentiation.

View Article and Find Full Text PDF

Voluntary hyperventilation triggers seizures in the vast majority of people with absence epilepsy. The mechanisms that underlie this phenomenon remain unknown. Herein, we review observations - many made long ago - that provide insight into the relationship between breathing and absence seizures.

View Article and Find Full Text PDF

Maintenance of a low intracellular Cl concentration ([Cl]) is critical for enabling inhibitory neuronal responses to GABA receptor-mediated signaling. Cl transporters, including KCC2, and extracellular impermeant anions ([A]) of the extracellular matrix are both proposed to be important regulators of [Cl] Neurons of the reticular thalamic (RT) nucleus express reduced levels of KCC2, indicating that GABAergic signaling may produce excitation in RT neurons. However, by performing perforated patch recordings and calcium imaging experiments in rats (male and female), we find that [Cl] remains relatively low in RT neurons.

View Article and Find Full Text PDF

Recent evidence strongly supports the idea that common general anesthetics (GAs) such as isoflurane (Iso) and nitrous oxide (NO; laughing gas), as well as sedative drugs such as midazolam are neurotoxic for the developing mammalian brain having deleterious effects on neural circuits involved in cognition, learning and memory. However, to date, very little is known about epigenetic mechanisms involved in GA-induced plasticity of synaptic transmission in the hippocampus, the main memory-processing region in the brain. Here, we used patch-clamp recordings of miniature inhibitory post-synaptic currents (mIPSCs) from hippocampal neurons in slice cultures exposed to the clinically relevant GA combination.

View Article and Find Full Text PDF

Immune dysfunction is commonly associated with several neurological and mental disorders. Although the mechanisms by which peripheral immunity may influence neuronal function are largely unknown, recent findings implicate meningeal immunity influencing behaviour, such as spatial learning and memory. Here we show that meningeal immunity is also critical for social behaviour; mice deficient in adaptive immunity exhibit social deficits and hyper-connectivity of fronto-cortical brain regions.

View Article and Find Full Text PDF

Optogenetic and chemogenetic actuators are critical for deconstructing the neural correlates of behavior. However, these tools have several limitations, including invasive modes of stimulation or slow on/off kinetics. We have overcome these disadvantages by synthesizing a single-component, magnetically sensitive actuator, "Magneto," comprising the cation channel TRPV4 fused to the paramagnetic protein ferritin.

View Article and Find Full Text PDF

Zona glomerulosa cells (ZG) of the adrenal gland constantly integrate fluctuating ionic, hormonal and paracrine signals to control the synthesis and secretion of aldosterone. These signals modulate Ca levels, which provide the critical second messenger to drive steroid hormone production. Angiotensin II is a hormone known to modulate the activity of voltage-dependent L- and T-type Ca channels that are expressed on the plasma membrane of ZG cells in many species.

View Article and Find Full Text PDF

CaV3.2 T-type calcium channels, encoded by CACNA1H, are expressed throughout the brain, yet their general function remains unclear. We discovered that CaV3.

View Article and Find Full Text PDF

Prevailing literature supports the idea that common general anesthetics (GAs) cause long-term cognitive changes and neurodegeneration in the developing mammalian brain, especially in the thalamus. However, the possible role of GAs in modifying ion channels that control neuronal excitability has not been taken into consideration. Here we show that rats exposed to GAs at postnatal day 7 display a lasting reduction in inhibitory synaptic transmission, an increase in excitatory synaptic transmission, and concomitant increase in the amplitude of T-type calcium currents (T-currents) in neurons of the nucleus reticularis thalami (nRT).

View Article and Find Full Text PDF

Interneurons play a key role in cortical function and dysfunction, yet organization of cortical interneuronal circuitry remains poorly understood. Cortical Layer 1 (L1) contains 2 general GABAergic interneuron groups, namely single bouquet cells (SBCs) and elongated neurogliaform cells (ENGCs). SBCs predominantly make unidirectional inhibitory connections (SBC→) with L2/3 interneurons, whereas ENGCs frequently form reciprocal inhibitory and electric connections (ENGC↔) with L2/3 interneurons.

View Article and Find Full Text PDF

The long-lasting actions of the inhibitory neurotransmitter GABA result from the activation of metabotropic GABA(B) receptors. Enhanced GABA(B)-mediated IPSCs are critical for the generation of generalized thalamocortical seizures. Here, we demonstrate that GABA(B)-mediated IPSCs recorded in the thalamus are primarily defined by GABA diffusion and activation of distal extrasynaptic receptors potentially up to tens of micrometers from synapses.

View Article and Find Full Text PDF

The presence and influence of neurons containing multiple neurotransmitters is well established, including the ability of coreleased transmitters to influence the same or different postsynaptic targets. Little is known, however, regarding whether presynaptic regulation of multitransmitter neurons influences all transmission from these neurons. Using the identified neurons and motor networks in the crab stomatogastric ganglion, we document the ability of presynaptic inhibition to selectively inhibit peptidergic cotransmission.

View Article and Find Full Text PDF