Sweet chestnut, an Asiatic tree introduced in many parts of Europe including the United Kingdom, is planted for nut production, timber, and amenity. Its major threat is the disease called blight, caused by the fungus , which infects through wounds by airborne spores. Field trapping using sticky rods rotating traps was performed in an infected area in Devon (between May 2021 and April 2023).
View Article and Find Full Text PDFLinear DNAs of any sequence can be packaged into empty viral procapsids by the phage T4 terminase with high efficiency in vitro. Packaging substrates of 5 kbp and 50 kbp, terminated by energy transfer dye pairs, were constructed from plasmid and lambda phage DNAs. Nuclease and fluorescence correlation spectroscopy (FCS) assays showed that approximately 20% of the substrate DNA was packaged and that the DNA dye ends of the packaged DNA were protected from nuclease digestion.
View Article and Find Full Text PDFBacteriophage T4 terminase packages DNA in vitro into empty small or large proheads (esps or elps). In vivo maturation of esps yields the more stable and voluminous elps required to contain the 170 kb T4 genome. Functional proheads can be assembled containing portal-GFP fusion proteins.
View Article and Find Full Text PDFBacteriophage terminases package DNA through the portal ring of a procapsid during phage maturation. We have probed the mechanism of the phage T4 large terminase subunit gp17 by analyzing linear DNAs that are translocated in vitro. Duplex DNAs of random sequence from 20 to 500 bp were efficiently packaged.
View Article and Find Full Text PDFThe DNA packaging machinery of bacteriophage T4 was studied in vitro using fluorescence correlation spectroscopy. The ATP-dependent translocation kinetics of labeled DNA from the bulk solution, to the phage interior, was measured by monitoring the accompanied decrease in DNA diffusibility. It was found that multiple short DNA fragments (100 basepairs) can be sequentially packaged by an individual phage prohead.
View Article and Find Full Text PDFIn Corynebacterium diphtheriae, diphtheria toxin is encoded by the tox gene of some temperate corynephages such as beta. beta-like corynephages are capable of inserting into the C. diphtheriae chromosome at two specific sites, attB1 and attB2.
View Article and Find Full Text PDFThe bacteriophage Mu strong gyrase site (SGS), required for efficient phage DNA replication, differs from other gyrase sites in the efficiency of gyrase binding coupled with a highly processive supercoiling activity. Genetic studies have implicated the right arm of the SGS as a key structural feature for promoting rapid Mu replication. Here, we show that deletion of the distal portion of the right arm abolishes efficient binding, cleavage, and supercoiling by DNA gyrase in vitro.
View Article and Find Full Text PDFThe bacteriophage Mu genome contains a centrally located strong gyrase site (SGS) that is required for efficient prophage replication. To aid in studying the unusual properties of the SGS, we sought other gyrase sites that might be able to substitute for the SGS in Mu replication. Five candidate sites were obtained by PCR from Mu-like prophage sequences present in Escherichia coli O157:H7 Sakai, Haemophilus influenzae Rd, Salmonella enterica serovar Typhi CT18, and two strains of Neisseria meningitidis.
View Article and Find Full Text PDFReplication of bacteriophage Mu DNA, a process requiring efficient synapsis of the prophage ends, takes place within the confines of the Escherichia coli nucleoid. Critical to ensuring rapid synapsis is the function of the SGS, a strong gyrase site, located at the centre of the Mu genome. Replacement of the SGS by the strong gyrase sites from pSC101 or pBR322 fails to support efficient prophage replication.
View Article and Find Full Text PDF