Cannabis has been used to treat convulsions and other disorders since ancient times. In the last few decades, preclinical animal studies and clinical investigations have established the role of cannabidiol (CBD) in treating epilepsy and seizures and support potential therapeutic benefits for cannabinoids in other neurological and psychiatric disorders. Here, we comprehensively review the role of cannabinoids in epilepsy.
View Article and Find Full Text PDFGrid cells, in entorhinal cortex (EC) and related structures, signal animal location relative to hexagonal tilings of 2D space. A number of modeling papers have addressed the question of how grid firing behaviors emerge using (for example) ideas borrowed from dynamical systems (attractors) or from coupled oscillator theory. Here we use a different approach: instead of asking how grid behavior emerges, we take as a given the experimentally observed intracellular potentials of superficial medial EC neurons during grid firing.
View Article and Find Full Text PDFAntisense inhibition of microRNAs is an emerging preclinical approach to pharmacoresistant epilepsy. A leading candidate is an "antimiR" targeting microRNA-134 (ant-134), but testing to date has used rodent models. Here, we develop an antimiR testing platform in human brain tissue sections.
View Article and Find Full Text PDFDysfunction in the hippocampus-prefrontal cortex (H-PFC) circuit is a critical determinant of schizophrenia. Screening of pyridazinone-risperidone hybrids on this circuit revealed EGIS 11150 (S 36549). EGIS 11150 induced theta rhythm in hippocampal slice preparations in the stratum lacunosum molecular area of CA1, which was resistant to atropine and prazosin.
View Article and Find Full Text PDFFocal cortical dysplasia (FCD) is one of the most common malformations causing refractory epilepsy. Dysregulation of glutamatergic systems plays a critical role in the hyperexcitability of dysplastic neurons in FCD lesions. The pharmacoresistant nature of epilepsy associated with FCD may be due to a lack of well-tolerated and precise antiepileptic drugs that can target glutamate receptors.
View Article and Find Full Text PDFAlzheimers Dement
October 2021
Neuroinflammation contributes to Alzheimer's disease (AD) progression. Secondary inflammatory insults trigger delirium and can accelerate cognitive decline. Individual cellular contributors to this vulnerability require elucidation.
View Article and Find Full Text PDFApproximately one-quarter of patients with mitochondrial disease experience epilepsy. Their epilepsy is often severe and resistant towards conventional antiepileptic drugs. Despite the severity of this epilepsy, there are currently no animal models available to provide a mechanistic understanding of mitochondrial epilepsy.
View Article and Find Full Text PDFClick here to listen to the Podcast The one-third of people who do not gain seizure control through current treatment options need a revolution in epilepsy therapeutics. The general population appears to be showing a fundamental and rapid shift in its opinion regarding cannabis and cannabis-related drugs. It is quite possible that cannabidiol, licensed in the USA for treating rare genetic epilepsies, may open the door for the widespread legalisation of recreational cannabis.
View Article and Find Full Text PDFIEEE Trans Biomed Circuits Syst
June 2018
Neuromodulation technologies are progressing from pacemaking and sensory operations to full closed-loop control. In particular, optogenetics-the genetic modification of light sensitivity into neural tissue allows for simultaneous optical stimulation and electronic recording. This paper presents a neural interface application-specified integrated circuit (ASIC) for intelligent optoelectronic probes.
View Article and Find Full Text PDFAvian and mammalian brains have evolved independently from each other for about 300 million years. During that time, the hippocampal formation (HF) has diverged in morphology and cytoarchitecture, but seems to have conserved much of its function. It is therefore an open question how seemingly different neural organizations can generate the same function.
View Article and Find Full Text PDFCurr Opin Pharmacol
August 2017
Metabotropic GABAB receptors clearly modify cognitive performance in preclinical animal models, yet translation to treating human disease has been elusive. Compared to their ionotropic GABAA receptor counterpart GABAB receptors not only regulate postsynaptic excitability but also regulate diverse synaptic inputs by presynaptically inhibiting neurotransmitter release. As such, the choice of agonist, antagonist, -ve or +ve modulator as well as CNS exposure level, timing of delivery and longevity of action strongly influence the probability of unlocking the procognitive potential of GABAB receptors in human disease.
View Article and Find Full Text PDFAcute in vitro models have revealed a great deal of information about mechanisms underlying many types of epileptiform activity. However, few examples exist that shed light on spike-and-wave (SpW) patterns of pathological activity. SpW are seen in many epilepsy syndromes, both generalized and focal, and manifest across the entire age spectrum.
View Article and Find Full Text PDFThe brain is made up of trillions of synaptic connections that together form neural networks needed for normal brain function and behavior. SLM2 is a member of a conserved family of RNA binding proteins, including Sam68 and SLM1, that control splicing of Neurexin1-3 pre-mRNAs. Whether SLM2 affects neural network activity is unknown.
View Article and Find Full Text PDFIncreasingly in the realm of neurological disorders, particularly those involving neurodegeneration, mitochondrial dysfunction is emerging at the core of their pathogenic processes. Most of these diseases still lack effective treatment and are hampered by a shortfall in the development of novel medicines. Clearly new targets that translate well to the clinic are required.
View Article and Find Full Text PDFIncreasingly, neuroscientists are taking the opportunity to use live human tissue obtained from elective neurosurgical procedures for electrophysiological studies in vitro. Access to this valuable resource permits unique studies into the network dynamics that contribute to the generation of pathological electrical activity in the human epileptic brain. Whilst this approach has provided insights into the mechanistic features of electrophysiological patterns associated with human epilepsy, it is not without technical and methodological challenges.
View Article and Find Full Text PDFObjective: The aim of this work was to determine the prevalence and progression of epilepsy in adult patients with mitochondrial disease.
Methods: We prospectively recruited a cohort of 182 consecutive adult patients attending a specialized mitochondrial disease clinic in Newcastle upon Tyne between January 1, 2005 and January 1, 2008. We then followed this cohort over a 7-year period, recording primary outcome measures of occurrence of first seizure, status epilepticus, stroke-like episode, and death.
GABAergic inhibition, which is instrumental in the generation of hippocampal gamma oscillations, undergoes significant changes during development. However, the development of hippocampal gamma oscillations remains largely unknown. Here, we explored the developmental features of kainate-induced oscillations (KA-Os) in CA3 region of rat hippocampal slices.
View Article and Find Full Text PDFAltered inhibitory function is an important facet of epileptic pathology. A key concept is that GABAergic activity can become excitatory if intraneuronal chloride rises. However, it has proved difficult to separate the role of raised chloride from other contributory factors in complex network phenomena, such as epileptic pathology.
View Article and Find Full Text PDFAims: Mitochondrial disorders are among the most frequently inherited cause of neurological disease and arise due to mutations in mitochondrial or nuclear DNA. Currently, we do not understand the specific involvement of certain brain regions or selective neuronal vulnerability in mitochondrial disease. Recent studies suggest γ-aminobutyric acid (GABA)-ergic interneurones are particularly susceptible to respiratory chain dysfunction.
View Article and Find Full Text PDFAlthough there is a great multiplicity of normal brain electrical activities, one can observe defined, relatively abrupt, transitions between apparently normal rhythms and clearly abnormal, higher amplitude, "epileptic" signals; transitions occur over tens of ms to many seconds. Transitional activity typically consists of low-amplitude very fast oscillations (VFO). Examination of this VFO provides insight into system parameters that differentiate the "normal" from the "epileptic.
View Article and Find Full Text PDFEpilepsy Behav
September 2014
Seizures are a prominent symptom in patients with both primary and secondary brain tumors. Medical management of seizure control in this patient group is problematic as the mechanisms linking tumorigenesis and epileptogenesis are poorly understood. It is possible that several mechanisms contribute to tumor-associated epileptic zone formation.
View Article and Find Full Text PDF