Publications by authors named "Mark O Aksoy"

BACKGROUNDMost individuals with prior COVID-19 disease manifest long-term protective immune responses against reinfection. Accordingly, we tested the hypothesis that humoral immune and reactogenicity responses to a SARS-CoV-2 mRNA vaccine differ in individuals with and without prior COVID-19 disease.METHODSHealth care workers (n = 61) with (n = 30) and without (n = 31) prior COVID-19 disease received two 30 μg doses of Pfizer BNT162b2 vaccine 3 weeks apart.

View Article and Find Full Text PDF

Background: Identification of biomarkers of cigarette smoke -induced lung damage and early COPD is an area of intense interest. Glucose regulated protein of 78 kD (i.e.

View Article and Find Full Text PDF

Rationale: The mechanisms underlying formation of lung lymphoid follicles (LF) in chronic obstructive pulmonary disease (COPD) are unknown. The chemokine receptor CXCR3 regulates immune responses in secondary lymphoid structures elsewhere in the body and is highly expressed by Th1 lymphocytes in the airway in COPD. Because chemokine receptors control inflammatory cell homing to inflamed tissue, we reasoned that CXCR3 may contribute to LF formation in COPD.

View Article and Find Full Text PDF

Chemokine receptors control several fundamental cellular processes in both hematopoietic and structural cells, including directed cell movement, i.e., chemotaxis, cell differentiation, and proliferation.

View Article and Find Full Text PDF

The CXC chemokines, IP-10/CXCL10 and IL-8/CXCL8, play a role in obstructive lung disease by attracting Th1/Tc1 lymphocytes and neutrophils, respectively. Inhaled corticosteroids (ICS) and long acting beta 2-agonists (LABA) are widely used. However, their effect(s) on the release of IP-10 and IL-8 by airway epithelial cells are poorly understood.

View Article and Find Full Text PDF

Human airway epithelial cells (HAEC) constitutively express the CXC chemokine receptor CXCR3, which regulates epithelial cell movement. In diseases such as chronic obstructive pulmonary disease and asthma, characterized by denudation of the epithelial lining, epithelial cell migration may contribute to airway repair and reconstitution. This study compared the potency and efficacy of three CXCR3 ligands, I-TAC/CXCL11, IP-10/CXCL10, and Mig/CXCL9, as inducers of chemotaxis in HAEC and examined the underlying signaling pathways involved.

View Article and Find Full Text PDF

We recently demonstrated that human bronchial epithelial cells (HBEC) constitutively express the CXC chemokine receptor CXCR3, which when activated, induces directed cell migration. The present study in HBEC examined the relative expression of the CXCR3 splice variants CXCR3-A and -B, cell cycle dependence of CXCR3 expression, and the effects of the CXCR3 ligand, the interferon-gamma-inducible CXC chemokine I-TAC/CXCL11, on DNA synthesis and cell proliferation. Both CXCR3-A and -B mRNA, assessed by real-time RT-PCR, were expressed in normal HBEC (NHBEC) and the HBEC line 16-HBE.

View Article and Find Full Text PDF

Activation of the chemokine receptor CXCR3 by its cognate ligands induces several differentiated cellular responses important to the growth and migration of a variety of hematopoietic and structural cells. In the human respiratory tract, human airway epithelial cells (HAEC) release the CXCR3 ligands Mig/CXCL9, IP-10/CXCL10, and I-TAC/CXCL11. Simultaneous expression of CXCR3 by HAEC would have important implications for the processes of airway inflammation and repair.

View Article and Find Full Text PDF

Background: Activation of the beta(2)-adrenergic receptor (beta(2)AR) system expressed by human airway epithelial cells elicits a variety of cyclic adenosine monophosphate (cAMP)-dependent processes that help determine airway caliber and the intensity of airway inflammation in asthma. Glucocorticoids, mainstays in the treatment of asthma, profoundly affect the expression and function of the beta(2)-adrenergic receptor-adenylyl cyclase (beta(2)AR-AC) system in a variety of cell types. However, the effects of glucocorticoids on the beta(2)AR-AC system expressed by human airway epithelial cells are unstudied.

View Article and Find Full Text PDF