Personalization of gait neuroprosthetics is paramount to ensure their efficacy for users, who experience severe limitations in mobility without an assistive device. Our goal is to develop assistive devices that collaborate with and are tailored to their users, while allowing them to use as much of their existing capabilities as possible. Currently, personalization of devices is challenging, and technological advances are required to achieve this goal.
View Article and Find Full Text PDFThe development of a hybrid system for people with spinal cord injuries is described. The system includes implanted neural stimulation to activate the user's otherwise paralyzed muscles, an exoskeleton with electromechanical actuators at the hips and knees, and a sensory and control system that integrates both components. We are using a muscle-first approach: The person's muscles are the primary motivator for his/her joints and the motors provide power assistance.
View Article and Find Full Text PDFThis study assessed the metabolic energy consumption of walking with the external components of a "Muscle-First" Motor Assisted Hybrid Neuroprosthesis (MAHNP), which combines implanted neuromuscular stimulation with a motorized exoskeleton. The "Muscle-First" approach prioritizes generating motion with the wearer's own muscles via electrical stimulation with the actuators assisting on an as-needed basis. The motorized exoskeleton contributes passive resistance torques at both the hip and knee joints of 6Nm and constrains motions to the sagittal plane.
View Article and Find Full Text PDFA control system for bipedal walking in the sagittal plane was developed in simulation. The biped model was built based on anthropometric data for a 1.8 m tall male of average build.
View Article and Find Full Text PDFBackground: Functional neuromuscular stimulation, lower limb orthosis, powered lower limb exoskeleton, and hybrid neuroprosthesis (HNP) technologies can restore stepping in individuals with paraplegia due to spinal cord injury (SCI). However, a self-contained muscle-driven controllable exoskeleton approach based on an implanted neural stimulator to restore walking has not been previously demonstrated, which could potentially result in system use outside the laboratory and viable for long term use or clinical testing. In this work, we designed and evaluated an untethered muscle-driven controllable exoskeleton to restore stepping in three individuals with paralysis from SCI.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
August 2016
An untethered version of a stimulation-driven exoskeleton was evaluated for its ability to restore walking after paralysis from spinal cord injury. The hybrid neuroprosthesis (HNP) combined a passive variable-constraint exoskeleton for stability and support with functional neuromuscular stimulation (FNS) to contract the paralyzed muscles to drive limb movement. This self-contained HNP was operated by an onboard controller that sampled sensor signals, generated appropriate commands to both the exoskeletal constraints and integrated stimulator, and transmitted data wirelessly via Bluetooth to an off-board computer for real-time monitoring and recording for offline analysis.
View Article and Find Full Text PDFBackground: Users of neuroprostheses employing electrical stimulation (ES) generally complete the stand-to-sit (STS) maneuver with high knee angular velocities, increased upper limb support forces, and high peak impact forces at initial contact with the chair. Controlling the knee during STS descent is challenging in individuals with spinal cord injury (SCI) due to the decreasing joint moment available with increased knee angle in response to ES.
Methods: The goal of this study was to investigate the effects of incorporating either (1) a coupling mechanism that coordinates hip and knee flexion or (2) a mechanism that damps knee motion to keep the knee angular velocity constant during the STS transition.
Feasibility of using pressurized hydraulic fluid as a source of on-demand assistive power for hybrid neuroprosthesis combining exoskeleton with functional neuromuscular stimulation was explored. Hydraulic systems were selected as an alternative to electric motors for their high torque/mass ratio and ability to be located proximally on the exoskeleton and distribute power distally to assist in moving the joints. The power assist system (PAS) was designed and constructed using off-the-shelf components to test the feasibility of using high pressure fluid from an accumulator to provide assistive torque to an exoskeletal hip joint.
View Article and Find Full Text PDF