Human gut microbiome structure and emergent metabolic outputs impact health outcomes. However, what drives such community characteristics remains underexplored. Here, we rely on high throughput genomic reconstruction modeling, to infer the metabolic attributes and nutritional requirements of 816 gut strains, via a framework termed GEMNAST.
View Article and Find Full Text PDFMapping the dynamics of immune cell populations over time or disease-course is key to understanding immunopathogenesis and devising putative interventions. We present TrackSOM, a novel method for delineating cellular populations and tracking their development over a time- or disease-course cytometry datasets. We demonstrate TrackSOM-enabled elucidation of the immune response to West Nile Virus infection in mice, uncovering heterogeneous subpopulations of immune cells and relating their functional evolution to disease severity.
View Article and Find Full Text PDFB cells play a major role in multiple sclerosis (MS), with many successful therapeutics capable of removing them from circulation. One such therapy, alemtuzumab, is thought to reset the immune system without the need for ongoing therapy in a proportion of patients. The exact cells contributing to disease pathogenesis and quiescence remain to be identified.
View Article and Find Full Text PDFWhile diet modulates immunity, its impact on B cell ontogeny remains unclear. Using mixture modeling, a large-scale isocaloric dietary cohort mouse study identified carbohydrate as a major driver of B cell development and function. Increasing dietary carbohydrate increased B cell proportions in spleen, mesenteric lymph node and Peyer's patches, and increased antigen-specific immunoglobulin G production after immunization.
View Article and Find Full Text PDFAs the size and complexity of high-dimensional (HD) cytometry data continue to expand, comprehensive, scalable, and methodical computational analysis approaches are essential. Yet, contemporary clustering and dimensionality reduction tools alone are insufficient to analyze or reproduce analyses across large numbers of samples, batches, or experiments. Moreover, approaches that allow for the integration of data across batches or experiments are not well incorporated into computational toolkits to allow for streamlined workflows.
View Article and Find Full Text PDFSwarming has been observed in various biological systems from collective animal movements to immune cells. In the cellular context, swarming is driven by the secretion of chemotactic factors. Despite the critical role of chemotactic swarming, few methods to robustly identify and quantify this phenomenon exist.
View Article and Find Full Text PDFSARS-CoV-2 causes a spectrum of COVID-19 disease, the immunological basis of which remains ill defined. We analyzed 85 SARS-CoV-2-infected individuals at acute and/or convalescent time points, up to 102 days after symptom onset, quantifying 184 immunological parameters. Acute COVID-19 presented with high levels of IL-6, IL-18, and IL-10 and broad activation marked by the upregulation of CD38 on innate and adaptive lymphocytes and myeloid cells.
View Article and Find Full Text PDFMotivation: Many 'automated gating' algorithms now exist to cluster cytometry and single cell sequencing data into discrete populations. Comparative algorithm evaluations on benchmark datasets rely either on a single performance metric, or a few metrics considered independently of one another. However, single metrics emphasise different aspects of clustering performance and do not rank clustering solutions in the same order.
View Article and Find Full Text PDFFilamentous actin (F-actin) provides cells with mechanical support and promotes the mobility of intracellular structures. Although F-actin is traditionally considered to be cytoplasmic, here we reveal that nuclear F-actin participates in the replication stress response. Using live and super-resolution imaging, we find that nuclear F-actin is polymerized in response to replication stress through a pathway regulated by ATR-dependent activation of mTORC1, and nucleation through IQGAP1, WASP and ARP2/3.
View Article and Find Full Text PDFCytotoxic T lymphocytes (CTLs) are thought to arrive at target sites either via random search or following signals by other leukocytes. Here, we reveal independent emergent behaviour in CTL populations attacking tumour masses. Primary murine CTLs coordinate their migration in a process reminiscent of the swarming observed in neutrophils.
View Article and Find Full Text PDFStudies suggest the gut microbiota contributes to the development of obesity and metabolic syndrome. Exercise alters microbiota composition and diversity and is protective of these maladies. We tested whether the protective metabolic effects of exercise are mediated through fecal components through assessment of body composition and metabolism in recipients of fecal microbiota transplantation (FMT) from exercise-trained (ET) mice fed normal or high-energy diets.
View Article and Find Full Text PDFModels of the human gastrointestinal tract (GIT) can be powerful tools for examining the biological interactions of food products and pharmaceuticals. This can be done under normal healthy conditions or using models of disease-many of which have no curative therapy. This report outlines the field of gastrointestinal modeling, with a particular focus on the intestine.
View Article and Find Full Text PDFComputational and mathematical modelling has become a valuable tool for investigating biological systems. Modelling enables prediction of how biological components interact to deliver system-level properties and extrapolation of biological system performance to contexts and experimental conditions where this is unknown. A model's value hinges on knowing that it faithfully represents the biology under the contexts of use, or clearly ascertaining otherwise and thus motivating further model refinement.
View Article and Find Full Text PDFVaccine-induced immunity depends on the generation of memory B cells (MBC). However, where and how MBCs are reactivated to make neutralising antibodies remain unknown. Here we show that MBCs are prepositioned in a subcapsular niche in lymph nodes where, upon reactivation by antigen, they rapidly proliferate and differentiate into antibody-secreting plasma cells in the subcapsular proliferative foci (SPF).
View Article and Find Full Text PDFDiet influences health and patterns of disease in populations. How different diets do this and why outcomes of diets vary between individuals are complex and involve interaction with the gut microbiome. A major challenge for predicting health outcomes of the host-microbiome dynamic is reconciling the effects of different aspects of diet (food composition or intake rate) on the system.
View Article and Find Full Text PDFJ R Soc Interface
September 2016
Computational agent-based simulation (ABS) is increasingly used to complement laboratory techniques in advancing our understanding of biological systems. Calibration, the identification of parameter values that align simulation with biological behaviours, becomes challenging as increasingly complex biological domains are simulated. Complex domains cannot be characterized by single metrics alone, rendering simulation calibration a fundamentally multi-metric optimization problem that typical calibration techniques cannot handle.
View Article and Find Full Text PDFThe advent of two-photon microscopy now reveals unprecedented, detailed spatio-temporal data on cellular motility and interactions in vivo. Understanding cellular motility patterns is key to gaining insight into the development and possible manipulation of the immune response. Computational simulation has become an established technique for understanding immune processes and evaluating hypotheses in the context of experimental data, and there is clear scope to integrate microscopy-informed motility dynamics.
View Article and Find Full Text PDF