Publications by authors named "Mark Mineev-Weinstein"

We develop statistical mechanics for stochastic growth processes and apply it to Laplacian growth by using its remarkable connection with a random matrix theory. The Laplacian growth equation is obtained from the variation principle and describes adiabatic (quasistatic) thermodynamic processes in the two-dimensional Dyson gas. By using Einstein's theory of thermodynamic fluctuations we consider transitional probabilities between thermodynamic states, which are in a one-to-one correspondence with simply connected domains occupied by gas.

View Article and Find Full Text PDF

Valleys that form around a stream head often develop characteristic finger-like elevation contours. We study the processes involved in the formation of these valleys and introduce a theoretical model that indicates how shape may inform the underlying processes. We consider valley growth as the advance of a moving boundary travelling forward purely through linearly diffusive erosion, and we obtain a solution for the valley shape in three dimensions.

View Article and Find Full Text PDF

A point source on a plane constantly emits particles which rapidly diffuse and then stick to a growing cluster. The growth probability of a cluster is presented as a sum over all possible scenarios leading to the same final shape. The classical point for the action, defined as a minus logarithm of the growth probability, describes the most probable scenario and reproduces the Laplacian growth equation, which embraces numerous fundamental free boundary dynamics in nonequilibrium physics.

View Article and Find Full Text PDF

A new general class of exact solutions is presented for the time evolution of a bubble of arbitrary initial shape in a Hele-Shaw cell when surface tension effects are neglected. These solutions are obtained by conformal mapping the viscous flow domain to an annulus in an auxiliary complex plane. It is then demonstrated that the only stable fixed point (attractor) of the nonsingular bubble dynamics corresponds precisely to the selected pattern.

View Article and Find Full Text PDF

Harmonic moments are integrals of integer powers of z=x+iy over a domain. Here, the domain is an exterior of a bubble of air growing in an oil layer between two horizontal closely spaced plates. Harmonic moments are a natural basis for such Laplacian growth phenomena because, unlike other representations, these moments linearize the zero surface tension problem [S.

View Article and Find Full Text PDF

Our experiments on viscous fingering of air into oil contained between closely spaced plates reveal two selection rules for the fjords of oil that separate fingers of air. (Fjords are the building blocks of solutions of the zero-surface-tension Laplacian growth equation.) Experiments in rectangular and circular geometries yield fjords with base widths lambda(c)/2, where lambda(c) is the most unstable wavelength from a linear stability analysis.

View Article and Find Full Text PDF