Publications by authors named "Mark Matsumoto"

This study quantified the mercury speciation in a contaminated area three decades after an elemental mercury spill from a sodium nuclear reactor experiment, and evaluated ex situ and in situ remediation strategies. Soil samples were taken across multiple sites with different soil depths. A majority of total mercury was distributed in surface soils with depths between 0-0.

View Article and Find Full Text PDF

Recombinant DNA methods have been exploited to enable the creation of protein-based block copolymers with programmable sequences, desired properties, and predictable three-dimensional structures. These advantages over conventional polymer counterparts facilitate the utility of this new class of biomaterials in a wide range of applications. In this project, we exploited the environmental application of protein-based block copolymers based on elastin-like protein (ELP) sequences.

View Article and Find Full Text PDF

Cadmium contamination of soil is a major concern in the biosphere. Beyond the suite of available physico-chemical treatment methods, green and more efficient technologies are desired to reduce cadmium and other heavy metal contaminants to acceptable levels. Elastin-like polypeptides (ELP) composed of a polyhistidine domain (ELPH12) can be used as an environmentally benign chelating agent for ex situ soil washing.

View Article and Find Full Text PDF

Biological reduction of perchlorate by autotrophic microorganisms attached to zerovalent iron (ZVI) was studied in flow-through columns. The effects of pH, flow rate, and influent perchlorate and nitrate concentrations on perchlorate reduction were investigated. Excellent perchlorate removal performance (> or = 99%) was achieved at empty bed residence times (EBRTs) ranging from 0.

View Article and Find Full Text PDF

A series of batch experiments were performed to study the combination of zero-valent iron (ZVI) with perchlorate-reducing microorganisms (PRMs) to remove perchlorate from groundwater. In this method, H2 produced during the process of iron corrosion by water is used by PRMs as an electron donor to reduce perchlorate to chloride. Perchlorate degradation rates followed Monod kinetics, with a normalized maximum utilization rate (rmax) of 9200 microg g(-1) (dry wt) h(-1) and a half-velocity constant (Ks) of 8900 microg L(-1).

View Article and Find Full Text PDF

Kinetic experiments were carried out in a semicontinuous wastewater treatment process called self-cycling fermentation (SCF) using a defined mixed culture and various concentrations of synthetic brewery wastewater. The same consortium, which had been previously identified as Acinetobacter sp., Enterobacter sp.

View Article and Find Full Text PDF

Enrichment of an activated sludge inoculum in synthetic brewery wastewater, which included glucose, maltose, and ethanol, was conducted in batch experiments to identify the dominant microbes present, to determine methodologies capable of monitoring the mixed culture population dynamics, and to determine the consortium's substrate degradation behavior. These results and methodologies were subsequently used in the determination of the population dynamics of suspended and attached microorganisms in a sequencing batch system in the second part of this research work. The three-membered microbial community comprised two bacterial and one fungal species that were identified as Acinetobacter sp.

View Article and Find Full Text PDF

An elastin-like polypeptide (ELP) composed of a polyhistidine tail (ELPH12) was exploited as a tunable, metal-binding biopolymer with high affinity toward cadmium. By taking advantage of the property of ELPH12 to undergo a reversible thermal precipitation, easy recovery of the sequestered cadmium from contaminated water was demonstrated as the result of a simple temperature change. In this study, batch soil washing experiments were performed to evaluate the feasibility of using ELPH12 as an environmentally benign strategy for removing cadmium from contaminated soil.

View Article and Find Full Text PDF