Femtosecond time resolved pump-probe protein X-ray crystallography requires highly accurate measurements of the photoinduced structure factor amplitude differences. In the case of femtosecond photolysis of single P63 crystals of the Photoactive Yellow Protein, it is shown that photochemical dynamics place a considerable restraint on the achievable time resolution due to the requirement to stretch and add second order dispersion in order to generate threshold concentration levels in the interaction region. Here, we report on using a 'quasi-cw' approach to use the rotation method with monochromatic radiation and 2 eV bandwidth at 9.
View Article and Find Full Text PDFThe reversible photoswitching between the 'on' and 'off' states of the fluorescent protein Dronpa involves photoisomerization as well as protein side-chain rearrangements, but the process of interconversion remains poorly characterized. Here we use time-resolved infrared measurements to monitor the sequence of these structural changes, but also of proton transfer events, which are crucial to the development of spectroscopic contrast. Light-induced deprotonation of the chromophore phenolic oxygen in the off state is a thermal ground-state process, which follows ultrafast (9 ps) trans-cis photoisomerization, and so does not involve excited-state proton transfer.
View Article and Find Full Text PDF